Spectral Difference Solution of Unsteady Compressible Micropolar Equations on Moving and Deforming Grids

Chunlei Liang ¹

¹Assistant Professor, George Washington University

Applied and Computational Mathematics Division seminar series at NIST in Gaithersburg, MD on Oct. 18th, 2011

- Motivation
- 2 Why spectral difference method?
 - Element-wise polynomial reconstruction
 - High-order accuracy even with curved boundary
- Mathematical Formulation
- Transform Navier-Stokes and Micropolar equations
- 5 Elements of the SD method
- 6 Verification
- Flow past an oscillating cylinder
- 8 Flow around a heaving and pitching airfoil past an oscillating cylinder
- Oncluding remark

Sea turtle swimming

Four flippers

Front flippers for thrust generation. Back flipper for steering.

Oscillating wing wind- and hydro- power generator

Hydrodynamically controlled wing

Aerohydro Research and Technology Associates.

Plunge-Pitch airfoil for lift generation

Element-wise polynomial reconstruction

p-refinement

No re-meshing

Element-wise polynomial reconstruction

p-refinement

- No re-meshing
- Poor boundary representation

High-order accuracy even with curved boundary

element mapping with high-order curved boundary

$$\mathcal{J} = \frac{\partial(x, y, t)}{\partial(\xi, \eta, \tau)} \\
= \begin{bmatrix} x_{\xi} & x_{\eta} & x_{\tau} \\ y_{\xi} & y_{\eta} & y_{\tau} \\ 0 & 0 & 1 \end{bmatrix} (1)$$

Key

Universal reconstruction

High-order accuracy even with curved boundary

High-order scheme is attractive for vortex dominated flow

4th order SD

Compressible Navier-Stokes equations

$$\frac{\partial \mathbf{Q}}{\partial t} + \nabla \mathbf{F}_{inv}(\mathbf{Q}) - \nabla \mathbf{F}_{v}(\mathbf{Q}, \nabla \mathbf{Q}) = 0$$
 (2)

$$\mathbf{Q} = \left\{ \begin{array}{c} \rho \\ \rho u \\ \rho v \\ E \end{array} \right\}, \quad f_i = \left\{ \begin{array}{c} \rho u \\ \rho u^2 + p \\ \rho uv \\ u(E+p) \end{array} \right\}, \quad g_i = \left\{ \begin{array}{c} \rho v \\ \rho uv \\ \rho v^2 + p \\ v(E+p) \end{array} \right\} (3)$$

$$\frac{f_v}{\mu} = \left\{ \begin{array}{c} 0 \\ 2u_x + \lambda(u_x + v_y) \\ v_x + u_y \\ uf_{v[2]} + vf_{v[3]} + \frac{C_p}{P_r} T_x \end{array} \right\}, \frac{g_v}{\mu} = \left\{ \begin{array}{c} 0 \\ v_x + u_y \\ 2v_y + \lambda(u_x + v_y) \\ ug_{v[2]} + vg_{v[3]} + \frac{C_p}{P_r} T_y \end{array} \right\}$$

Linear constitutive relation

$$t_{ij} = (-p + \lambda a_{mm})\delta_{ij} + (\mu + \kappa)a_{ij} + \mu a_{ji} \tag{4}$$

For Navier-Stokes equations, $a_{ij} = v_{i,i}$;

Micropolar formulation has two deformation tensors

- $a_{ij} = v_{i,i} + e_{jik}\omega_k$;
- $b_{ij} = \omega_{i,j}$.

The same linear relation for heat flux in both N-S and Micropolar formulations, i.e. Fourier's Law:

$$\sigma = \frac{\nu}{Pr} \cdot gradT. \tag{5}$$

Pressure-Energy Relation:

$$E=rac{p}{\gamma-1}+rac{1}{2}
ho(u^2+v^2)$$
 for Navier-Stokes formulation;

$$E = \frac{p}{\gamma - 1} + \frac{1}{2}\rho(u^2 + v^2) + \frac{1}{2}\rho j\omega^2 \text{ for Micropolar formulation.}$$

Micropolar formulation

$$\frac{\partial \mathbf{Q}}{\partial t} + \nabla \mathbf{F}_{inv}(\mathbf{Q}) - \nabla \mathbf{F}_{v}(\mathbf{Q}, \nabla \mathbf{Q}) = \mathbf{S}$$
 (6)

$$\mathbf{Q} = \left\{ \begin{array}{c} \rho \\ \rho u \\ \rho v \\ \rho j \omega \\ E \end{array} \right\}, \quad f_i = \left\{ \begin{array}{c} \rho u \\ \rho u^2 + p \\ \rho u v \\ \rho j \omega u \\ u(E+p) \end{array} \right\}, \quad g_i = \left\{ \begin{array}{c} \rho v \\ \rho u v \\ \rho v^2 + p \\ \rho j \omega v \\ v(E+p) \end{array} \right\}$$
 (7)

$$\mathbf{S} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ \kappa \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y} - 2\omega \right) \\ 0 \end{array} \right\} \tag{8}$$

Viscous fluxes of Micropolar equations

$$f_{v} = \begin{cases} 0 \\ (2\mu + \kappa)u_{x} + \lambda(u_{x} + v_{y}) \\ \mu(v_{x} + u_{y}) + \kappa(v_{x} - \omega) \\ \Gamma \omega_{x} \\ uf_{v[2]} + vf_{v[3]} + \omega f_{v[4]} + \frac{\mu C_{p}}{P_{r}} T_{x} \end{cases}$$
 (9)

$$g_{v}(\mathbf{Q}, \nabla \mathbf{Q}) = \left\{ \begin{array}{c} \mu(v_{x} + u_{y}) + \kappa(u_{y} + \omega) \\ (2\mu + \kappa)v_{y} + \lambda(u_{x} + v_{y}) \\ \Gamma \omega_{y} \\ ug_{v[2]} + vg_{v[3]} + \omega g_{v[4]} + \frac{\mu C_{p}}{P_{r}} T_{y} \end{array} \right\}$$
(10)

Ref: Chen, Lee, Liang (2011), JNFM; Chen, Liang, Lee (2011), JNN.

Transform conservative equations

$$\partial F/\partial x = \partial F/\partial \xi \cdot \frac{\partial \xi}{\partial \mathbf{x}} + \partial F/\partial \eta \cdot \frac{\partial \eta}{\partial \mathbf{x}} + \partial F/\partial \tau \cdot \frac{\partial \tau}{\partial \mathbf{x}}$$
(11)

$$\partial G/\partial y = \partial G/\partial \xi \cdot \frac{\partial \xi}{\partial \mathbf{y}} + \partial G/\partial \eta \cdot \frac{\partial \eta}{\partial \mathbf{y}} + \partial G/\partial \tau \cdot \frac{\partial \tau}{\partial \mathbf{y}}$$
(12)

$$ilde{Q} = |\mathcal{J}| \cdot Q$$

$$\begin{pmatrix} ilde{F} \\ ilde{G} \\ ilde{O} \end{pmatrix} = |\mathcal{J}| \begin{bmatrix} ilde{\xi}_x & ilde{\xi}_y & ilde{\xi}_ au \\ ilde{\eta}_x & ilde{\eta}_y & ilde{\eta}_ au \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} F \\ G \\ Q \end{pmatrix}$$

Transformed conservative equations + Geometric conservation law

$$\frac{\partial \tilde{Q}}{\partial \tau} + \frac{\partial \tilde{F}}{\partial \varepsilon} + \frac{\partial \tilde{G}}{\partial n} = 0 \tag{13}$$

$$\frac{\partial |\mathcal{J}|}{\partial \tau} + \frac{\partial (|\mathcal{J}|\xi_t)}{\partial \xi} + \frac{\partial (|\mathcal{J}|\eta_t)}{\partial \eta} = 0$$
 (14)

Final set of equations

$$\frac{\partial Q}{\partial \tau} = \frac{1}{|\mathcal{J}|} \left\{ Q \left[\frac{\partial (|\mathcal{J}|\xi_t)}{\partial \xi} + \frac{\partial (|\mathcal{J}|\eta_t)}{\partial \eta} \right] - \left[\frac{\partial \tilde{F}}{\partial \xi} + \frac{\partial \tilde{G}}{\partial \eta} \right] \right\} (15)$$

A five-stage fourth-order Runge-Kutta method for time advancement.

$$\bullet \ \frac{\partial \tilde{Q}}{\partial \tau} + \frac{\partial \tilde{F}}{\partial \xi} + \frac{\partial \tilde{G}}{\partial \eta} = 0$$

- $\bullet \ \frac{\partial \tilde{Q}}{\partial \tau} + \frac{\partial \tilde{F}}{\partial \xi} + \frac{\partial \tilde{G}}{\partial \eta} = 0$
- solution points store \tilde{Q} , ξ flux points store \tilde{F} and η flux points store \tilde{G} .

- $\bullet \ \frac{\partial \tilde{Q}}{\partial \tau} + \frac{\partial \tilde{F}}{\partial \xi} + \frac{\partial \tilde{G}}{\partial \eta} = 0$
- solution points store \tilde{Q} , ξ flux points store \tilde{F} and η flux points store \tilde{G} .
- 4 solution points in 1D

- $\bullet \ \frac{\partial \tilde{Q}}{\partial \tau} + \frac{\partial \tilde{F}}{\partial \xi} + \frac{\partial \tilde{G}}{\partial \eta} = 0$
- solution points store \tilde{Q} , ξ flux points store \tilde{F} and η flux points store \tilde{G} .
- 4 solution points in 1D
- 5 flux points in 1D

- $\bullet \ \frac{\partial \tilde{Q}}{\partial \tau} + \frac{\partial \tilde{F}}{\partial \xi} + \frac{\partial \tilde{G}}{\partial \eta} = 0$
- solution points store \hat{Q} , ξ flux points store \tilde{F} and η flux points store \tilde{G} .
- 4 solution points in 1D
- 5 flux points in 1D
- The reconstructed field using polynomials is continuous within the cell but discontinuous across the cell interfaces.

• Eigenvalues of $\partial {\bf F}_i/\partial Q$ are V_n-c , V_n , and V_n+c for N-S equations.

- Eigenvalues of $\partial {\bf F}_i/\partial Q$ are V_n-c , V_n , and V_n+c for N-S equations.
- Eigenvalues of $\partial \mathbf{F}_i/\partial Q$ are V_n-c , V_n , V_n and V_n+c for Micropolar equations.

- Eigenvalues of $\partial {\bf F}_i/\partial Q$ are V_n-c , V_n , and V_n+c for N-S equations.
- Eigenvalues of $\partial \mathbf{F}_i/\partial Q$ are V_n-c , V_n , V_n and V_n+c for Micropolar equations.
- Rusanov flux

$$\hat{\mathbf{F}}_{inv} = \frac{1}{2} \left[(\mathbf{F}_i^L + \mathbf{F}_i^R) \cdot \mathbf{n}_f - |V_n + c| \cdot \left(Q^R - Q^L \right) \right]$$

- Eigenvalues of $\partial {\bf F}_i/\partial Q$ are V_n-c , V_n , and V_n+c for N-S equations.
- Eigenvalues of $\partial \mathbf{F}_i/\partial Q$ are V_n-c , V_n , V_n and V_n+c for Micropolar equations.
- Rusanov flux $\hat{\mathbf{F}}_{inv} = \frac{1}{2} \left[(\mathbf{F}_i^L + \mathbf{F}_i^R) \cdot \mathbf{n}_f |V_n + c| \cdot \left(Q^R Q^L \right) \right]$
- Viscous interface flux using averaging approach.

Locating solution and flux points

N solution points (One can actually position arbitrarily)

Chebyshev-Gauss points

N+1 flux points

Legendre-Gauss quadrature points plus two end points of 0 and 1. key difference from Kopriva

$$P_n(\xi) = \frac{2n-1}{n}(2\xi - 1)P_{n-1}(\xi) - \frac{n-1}{n}P_{n-2}(\xi)$$
 (16)

where n = 1, ..., N - 1, $P_{-1}(\xi) = 0$ and $P_0(\xi) = 1$

Ref: H. T. Huynh, AIAA paper, 2007-4079,

Van den Abeele, Lacor, Wang, JSC, 2008,

A. Jameson, *JSC*, 2010.

Verification study for order of accuracy on unstructured grids

No. of cells	DOFs	L2-error	Order	L1-error	Order
3rd order SD					
2	18	8.247E-4	_	7.376E-4	-
8	72	1.501E-4	2.46	1.244E-4	2.57
32	288	1.865E-5	2.99	1.675E-5	2.89
4th order SD					
2	32	2.531E-4	-	1.93E-4	-
8	128	2.19E-5	3.53	1.927E-5	3.55
32	512	1.825E-6	3.585	1.641E-6	3.32

Table: L2 and L1 errors and orders of accuracy for planar Couette flow

Computational conditions

- $Re = \frac{\rho U_{\infty} D}{\mu + \kappa} = 185$
- Freestream Mach number = 0.2
- j = 1e-6
- $\Gamma = 1e 8$
- Oscillation amplitude $A_y/D = 0.2$,
- Reduced frequency $fD/U_{\infty}=0.2145$.

Solution of Navier-Stokes equations

Solution of Micropolar equations ($\mu/\kappa = 0.544$)

Micropolar effect on lift coefficient

$\mu/\kappa = 0.544$ case v.s. Navier-Stokes

Only one shedding frequency is obtained from Micropolar solution!

Solution of Micropolar equations ($\mu/\kappa = 2.6$)

Computational condition for Case I

•
$$Re = \frac{\rho U_{\infty} D}{\mu + \kappa} = 500$$
,

- Mach = 0.2,
- $\mu = 8e 4$,
- $\kappa = 1e 3$,
- j = 1e-6,
- $\Gamma = 1e 8$
- Oscillation amplitude $A_y/D=0.25$,
- Reduced frequency $fD/U_{\infty}=0.1$.

Vorticity contour

Computational condition for Case II

- $Re = \frac{\rho U_{\infty} D}{\mu + \kappa} = 500$,
- Mach = 0.2,
- $\mu = 8e 4$,
- $\kappa = 1e 3$,
- j = 1e-6,
- $\Gamma = 1e 8$.
- Oscillation amplitude $A_y/D=0.25$,
- Reduced frequency $fD/U_{\infty}=0.5$.

Vorticity contour from Navier-Stokes solution

Vorticity contour from Micropolar solution ($\mu/\kappa=0.54$)

Gyration contour

• We introduced a new formulation for compressible flow different from Navier-Stokes equations.

- We introduced a new formulation for compressible flow different from Navier-Stokes equations.
- SD method is successfully formulated and implemented for unsteady Micropolar flow.

- We introduced a new formulation for compressible flow different from Navier-Stokes equations.
- SD method is successfully formulated and implemented for unsteady Micropolar flow.
- Optimal order of accuracy is obtained.

- We introduced a new formulation for compressible flow different from Navier-Stokes equations.
- SD method is successfully formulated and implemented for unsteady Micropolar flow.
- Optimal order of accuracy is obtained.
- Extension is successfully made to moving and deformable grids.

Acknowledgement

• George Washington University Faculty Startup Fund

Acknowledgement

- George Washington University Faculty Startup Fund
- GW Graduate Fellowship to James Chen

Acknowledgement

- George Washington University Faculty Startup Fund
- GW Graduate Fellowship to James Chen
- Dr James Chen was co-advised by Prof. James D. Lee and Chunlei Liang

Mesh for a Plunge-Pitch Airfoil

Publications of the SD method

- Liu, Vinokur, Wang, J. Comput. Physics, 2006; *Wave Equations*.
- Wang, Liu, May, Jameson, J. Scientific Computing, 2007; Euler Equations.
- Liang, Jameson, Wang, J. Comput. Physics, 2009; N-S equations.
- Chen, Liang, Lee, Computers & Fluids, 2011. Micropolar Equations.

Multidomain staggered spectral method

Kopriva, J. Comput. Physics, 1998.