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Directed Self Assembly Experiments

Dean, D. M., Napolitano, A. P., Youssef, J. and Morgan, J. R. FASEB 2007



The Phenomenon
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A mathematical model of the current system will

1. allow for understanding the factors involved in cell
cluster reorganization

2. offer a framework to organize lab observations



Spontaneous Climb

The goal - to determine the nature
of the cell interactions driving

the reorganization of a homotypic
cluster

2 hrs 6 hrs




The Model

A fully dense aggregate is formed
The volume remains constant,

vy = 272a(0)b(0)? = 27%a(t)b(t)?

Total surface area of cluster

s(t) = 4m?a(t)b(t) = 2vy/b(t)

As the cluster moves up the pillar, a(t)
decreases and b(t) increases
providing a likely driving force.

Distance to the center of mass from the apex,

Z(t) = a(t) tana — b(t) sec .
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Nurse, A., Youssef, J., Freund, L.B. JAM 2011 Under Review



Possible Origin of Surface Energy

Cell to cell adhesion — Anchoring Junctions — Adherens Junctions

Adherens junctions mechanically attaches actin cytoskeletons
of connected cells

tension bundles

Higher free
energy

Generating contraction in these structures consumes ATP
which lowers the free energy of the connected cells

This serves as a natural basis for the surface energy of a cell cluster



The Model

Assume that there is a uniform surface
energy density « associated with the clus-
ter surface

The system free energy in terms of b(t)
is

F(t) = —vopgz(t) + v2vo/b(t) .

Rearrangement of cells on cluster surface occurs by
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surface diffusion with surface mass flux 3 and surface mobility m,

The energy dissipation is
[

D(t) = /

S(t) Mg
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Finding the Surface Flux

Points on azimuthal section of surface with respect to the apex of
the cone

(8, ¢) = {a(t) + b(t) cos ¢, Z(t) + b(t) sin ¢}
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A Variational Approach

Diffusive system evolves such that

F(t) + ;D (t)

is stationary under variations in the parameters characterizing the
rate of change of configuration (LBF & Suresh, Thin Film Materials).

This implies

o' (1) []-"(t) + %D(t)] =0.

The minor radius and the time are normalized according to

_ mypgt _ b(t)
T = bg 9 IB(T) - b()

where B(7) = 1 as by = b(0).

The ODE then requires specification of values of the non-dimensional

parameters
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Numerical Solution for Shape Evolution

b(t) Vo ~ Z4
Bt)=—, w=—, k= 5 _r
bo bo pgbs \

Elimination of hole
in the torus
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Numerical Solution for Shape Evolution
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Numerical Solution for shape evolution
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Results of differential equation for x = 100



Extraction of Surface Energy Density Values

Examination of the governing differential equation reveals that it has the
form
i b(2) ’
A(a, B(7)) + —5B(a, B(7)) + C(a, B(1),8'(T)) =0
pgb; mspg

For a particular value of o, observation of the motion b(t) yields a straight
line in the plane below which defines possible values of v and m.

a,=55° a,=65°

time Y m,
(hrs) | (mJ/m?) | 10" (m*hr/g)
> | 0.0580 0.543
4 | 00638 0.920
6 | 0.0667 1.238
. p;bg 8 | 0.0693 1386

Foty & Steinberg (05) & Sivansankar et al (99): 1.556 x 104 <y <1.522 x 10 mJ/m?



Conclusions from the Basic Model

Results reinforce the process of surface area reduction for
self assembled clusters

Rate of process affected by system parameters
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surface energy density of the clusters

Model can be extended to study clusters with both uniform
and nonuniform shapes
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Pairam & Fernandez-Nieves,
Physics Rev. Letter 2009

McGraw et al, Soft Matter 2010




Linear Stability Analysis of the Toroidal Cluster

The goal - to apply linear stability concepts to determine if the
cluster is stable against growth of small amplitude non-uniform
deformations

Y/

Initial equilibrium shape is a uniform torus

If the torus is perturbed slightly, will the perturbed shape
tend toward equilibrium or not?



Linear Stability Analysis of the Toroidal Cluster

ot

3
(el

r
ot

L

)

)

s

)

J

)|

)

5

)

)

)
=+
ot

r
o

The system free energy is now

F(t) = 7S(t)

Stability determined by change of S(t) as cluster

departs its uniform configuration i.e S(0)
/ 2(b,(t)-2¢,(1))

Development of a perturbation in the minor radius
of the form
b(0,t) = bi(t) — cx(t)(1 — cos k)

b, (1)

As volume is conserved, fluctuation parameters
cannot vary independently



v 1s spatially constant

} 2(b,(t)-2¢, (1))

b,(¢)

Surface of perturbed shape defined by

+(a(t) + b(0,t) cos @) sin 6
+ b(0,t) sinpe,
Surface area found by
27 T
Q/le\ __ [ [ /,.]..J. Vel 1 1L 10
D\b} — j / \/ actu |_U¢0J a av
0 —T

Always stable




Alternate perturbed shape

__ Surface of alternate perturbed shape found
2(b,(t)-2¢, (1)) by

r = (ro + b(0,t)(1 4 cos ¢)) cos O e,
______ +(ro + b(0,t)(1 + cos ¢)) sin B e,
2']:)k(t)
+ b(0,t) sinpe,

S (0) = 0 |Inconclusive

With the constraint of ry, the uniform toroidal clusters are stable
under this particular family of perturbations if v is everywhere the
same



v 1s not spatially constant

For simple illustration, ~(60)
7(8)
0.20]

0.15¢

0.10+
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Change in free energy no longer equivalent with change in surface
area



Nonuniform y with same applied perturbation

0) where

—~~

Stability now determined by F i/ 2(b(0)-2¢.(0)

Fo= | o [7(9) /_ 7; \/det [Gu) dqb} do

JOU
b,(t)

f(ro, bo k) g:'(()) = f(7ro, bg, k) ¢x(0)

r,/b, =4

stable

unstable




Non uniform y with same applied perturbation

f(rOJ b0| k)
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v 1s a function of position on the surface

f(rl]! bﬂ! k)

Similar results are obtained for - F(0) = (7o, bo, k) éx(0)
alternate perturbed shape 4 .

non-zero region of ( ) ave S IS i IR I PR I L B R
2 4 6 8 10 12 14 16 18 20 22
been arbitrarily chosen

These parameters influence f(rg, b, k)

However unstable configurations do

I I I

UBVEIUP 11 o111 tine LlIlllUI m tor Ul(ld.l bI apes z

Admittedly v can vary with ¢
as well as with time




Conclusions on Toroidal Stability

From work by McGraw et al (2010) and Pairam (2009) dependence
of stability on initial geomtery of cluster and radius of pillar is
expected

Linear stability analysis is only valid for finite time intervals

It is sufficient to define a critical value of a measurable parameter
which can then be experimentally verified



Summary of Results on Toroidal Clusters

Formation of uniform toroidal self-assembled
cluster at base of chamber

Cluster spontaneously climbs Remains at base of chamber
conical pillar to undergoes localized thinning
reduce its surface area around circumference
Rate of climb affected by A éor family of applied perturbatioD
* influence of SE/GPE (k) v must be a variable
* slope of conical pillar (o) * v (0) sufficient for instability
» surface mobility of diffusing cells * /b, affects cluster stability

A AN )




Further Work and Questions

Origin of y requires further investigation
More precise method required to extract values of m,

Conduct linear stability analysis of toroidal shapes with
— other family of perturbations

— more complex surface energy density function

For spatially constant y, conduct a nonlinear stability analysis of the
toroidal clusters
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A publication on the model of the climb of the torus up the conical
pillar is currently being revised for Journal of Applied Mechanics
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