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What is an inverse problem?

Forward Model

Input Signal Output Signal
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What is an inverse problem?

Forward Model

Input Signal Output Signal

Inverse Problem
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Application: Image Deblurring

@ Given: Blurred image and some
information about the blurring
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Application: Image Deblurring

@ Given: Blurred image and some
information about the blurring

@ Goal: Compute approximation of
true image
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Application: Super-Resolution Imaging

1-th low resolution image

@ Given: LR images and some
information about the motion
parameters
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Application: Super-Resolution Imaging

8-th low resolution image

@ Given: LR images and some
information about the motion
parameters
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Application: Super-Resolution Imaging

15-th low resolution image

@ Given: LR images and some
information about the motion
parameters
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Application: Super-Resolution Imaging

22-th low resolution image

@ Given: LR images and some
information about the motion
parameters
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Application: Super-Resolution Imaging

29-th low resolution image

@ Given: LR images and some
information about the motion
parameters
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Application: Super-Resolution Imaging

@ Given: LR images and some
information about the motion
parameters

@ Goal: Improve parameters and
approximate HR image
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Application: Tomographic Imaging

@ Given: 2D projection images
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Application: Tomographic Imaging

@ Given: 2D projection images

@ Goal: Approximate 3D volume
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What is an Inverse Problem?

Hadamard (1923): A problem is ill-posed if the solution
@ does not exist,
@ is not unique, or
@ does not depend continuously on the data.
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What is an Inverse Problem?

Hadamard (1923): A problem is ill-posed if the solution
@ does not exist,
@ is not unique, or
@ does not depend continuously on the data.

Forward
Problem

—

Inverse
Problem

True image:

% _

Blurred & noisy image:
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Outline

@ Regularization for Least Squares Systems
e High Performance Implementation
© Polyenergetic Tomosynthesis

0 Concluding Remarks
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Regularization for Least Squares Systems
The Linear Problem: b = Ax + &
The Nonlinear Problem: b = A(y)x + €

Outline

@ Regularization for Least Squares Systems
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Regularization for Least Squares Systems
The Linear Problem: b = Ax + &
The Nonlinear Problem: b = A(y)x + €

The Linear Problem

b=Ax+e¢
where
X € R" - true data
A € R™M*N - large, ill-conditioned matrix
e € R™ - noise, statistical properties may be known
b € R™ - known, observed data

Goal: Given b and A, compute approximation of x
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Regularization for Least Squares Systems
The Linear Problem: b = Ax + &
The Nonlinear Problem: b = A(y)x + €

Regularization

Tikhonov Regularization

min {Hb ~ Ax| + >\2]|Lx|]§} & min

b| [ A X
0 AL
@ Selecting a good regularization parameter, ), is difficult

e Discrepancy Principle
e Generalized Cross-Validation
e L-curve

@ Difficult for large-scale problems

2
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Regularization for Least Squares Systems

The Linear Problem: b = Ax + &
The Nonlinear Problem: b = A(y)x + €

lllustration of Semi-convergence Behavior

min [|b — Ax||,
Iteration O

Typical Behavior for I1l-Posed Problems

= X

Relative Error

20 40 60 80 100 120 140
Iteration
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Regularization for Least Squares Systems

The Linear Problem: b = Ax + &
The Nonlinear Problem: b = A(y)x + €

lllustration of Semi-convergence Behavior

min b — Ax(|z
Iteration O

Typical Behavior for I1l-Posed Problems

X

20 40 60 80 100 120 140 Iteration 10

Relative Error

Iteration
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Regularization for Least Squares Systems
The Linear Problem: b = Ax + &
The Nonlinear Problem: b = A(y)x + €

lllustration of Semi-convergence Behavior

min b — Ax(|z

Iteration O

Typical Behavior for I1l-Posed Problems

20 40 60 80 100 120 140 Iteration 10 - {

Iteration

Relative Error

Iteration 28

Solution
gets better
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Regularization for Least Squares Systems
The Linear Problem: b = Ax + &

The Nonlinear Problem: b A(y)x + &

lllustration of Semi-convergence Behavior

min b — Ax(|z

Iteration O

Typical Behavior for I1l-Posed Problems

Iteration 10 X Iteration 85

Iteration 28

Relative Error

20 40 60 80 100 120 140
Iteration

Solution
gets better
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Regularization for Least Squares Systems

The Linear Problem: b = Ax + €
The Nonlinear Problem: b A(y)x + &

lllustration of Semi-convergence Behavior

min b — Ax(|z

Iteration O

Iteration 150

Typical Behavior for I1l-Posed Problems

X

Iteration 10 Iteration 85

Relative Error

40 60 80 100 120 140
Iteration
Iteration 28

Noise
corrupts!

Solution
gets better
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Regularization for Least Squares Systems

The Linear Problem: b = Ax + €
The Nonlinear Problem: b A(y)x + &

lllustration of Semi-convergence Behavior

min b — Ax(|z

Iteration O

Iteration 150

Typical Behavior for I1l-Posed Problems

Relative Error

Iteration 10 Iteration 85

40 60 80 100 120 140
Iteration
Iteration 28
Solution
gets better

Either find a good stopping criteria or ...

Noise
corrupts!
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Regularization for Least Squares Systems
The Linear Problem: b = Ax + &

The Nonlinear Problem: b A(y)x + &

Motivation to use a Hybrid Method

... avoid semi-convergence behavior altogether!

Hybrid Method Stabilizes the Error

Iteration O

Relative Error

T

5 e 700 T

Iteration
Iteration 150

X X
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Regularization for Least Squares Systems
The Linear Problem: b = Ax + &
The Nonlinear Problem: b = A(y)x + €

Previous Work on Hybrid Methods

Regularization embedded in iterative method:

O’Leary and Simmons, SISSC, 1981.

@ Bjorck, BIT 1988.

@ Bjorck, Grimme, and Van Dooren, BIT, 1994.
@ Larsen, PhD Thesis, 1998.
°
°

Hanke, BIT 2001.
Kilmer and O’Leary, SIMAX, 2001.
@ Kilmer, Hansen, Espanol, 2006.

Use iterative method to solve regularized problem:
@ Golub, Von Matt, Numer. Math.,1991
@ Calvetti, Golub, Reichel, BIT, 1999
@ Frommer, Maass , SISC, 1999
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Regularization for Least Squares Systems
The Linear Problem: b = Ax + &
The Nonlinear Problem: b = A(y)x + €

Lanczos Bidiagonalization(LBD)

Given A and b, for k = 1,2, ..., compute

oW=[w wy -~ Wx Wii1 |, w;=Db/[b]|
oY=[vyr Y2 -+ Vg |
o -
P2 a2
e B=
Bk ak
i Br+1

where W and Y have orthonormal columns, and

AY = WB
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Regularization for Least Squares Systems
The Linear Problem: b = Ax + &
The Nonlinear Problem: b = A(y)x + €

The Projected Problem

After k steps of LBD, we solve the projected LS problem:

min ||b—Ax|lz = min||W'b — Bf||;
XeR(Y) f

where x = Yf.

Remarks:

@ lll-posed problem = B may be very ill-conditioned.
@ B is much smaller than A

@ Standard techniques (e.g. GCV) to find A and stopping
point
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Regularization for Least Squares Systems
The Linear Problem: b = Ax + &
The Nonlinear Problem: b = A(y)x + €

Lanczos Hybrid Method in Action: Satellite

]—LSQR (no regularization)\
< 0.9 ]
308
&
~ 0.7
o
o 0.67
]

2 0.5

o

€04t
0.3
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iteration
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Regularization for Least Squares Systems
The Linear Problem: b = Ax + &
The Nonlinear Problem: b = A(y)x + €

Lanczos Hybrid Method in Action: Satellite

=] SQR (no regularization)
M 0.9 = = = Tikhonov with optimal A,_ |
T 0.8
&
~ 0.7
o
o 0.6}
]
2 0.5
o
90.4— - EEEEEEEEEEEEEEEEE .. .
0.3

5‘0 160 150 200 250 300
iteration

Julianne Chung Numerical Methods for Large-Scale lll-Posed Inverse Problems



Regularization for Least Squares Systems
The Linear Problem: b = Ax + &
The Nonlinear Problem: b = A(y)x + €

Lanczos Hybrid Method in Action: Satellite

= | SQR (no regularization)

@0-9 = = = Tikhonov with optimal A,_ |
% 08f | Tikhonov with GCV A
Lo7 o
e BB NN AF |
o 0.67
]
2 0.5
K]
90.47 - EEEEEEEEEEEEEEEEE .. .

0.3

50 100 150 200 250 300
iteration
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Regularization for Least Squares Systems
The Linear Problem: b = Ax + &
The Nonlinear Problem: b = A(y)x + €

A Novel Approach: Weighted GCV

min Wb — Bf||;

GCV tends to over smooth, use weighted GCV function with
w<1:

_ nl|(/ - BB))WTb|?

o) [trace(l - wBBf\)} ’

New adaptive approach to select w
MATLAB implementation:

>> X = HyBR(A,b);
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Regularization for Least Squares Systems

The Linear Problem: b = Ax + &
The Nonlinear Problem: b = A(y)x + €

Results for Satellite

=1 SQR (no regularization)
0.9 = . Tikhonov with optimal A, |
’ ... Tikhonov with GCV 7\.k
0.8 ==WGCV, adaptive ® 1

relative error (S atellite)

0.3 L L L L
50 100 150 200 250 300
iteration
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Regularization for Least Squares Systems
The Linear Problem: b = Ax + &
The Nonlinear Problem: b = A(y)x + &

The Nonlinear Problem

where
X - true data

A(y) - large, ill-conditioned matrix defined by parameters y
(registration, blur, etc.)

€ - additive noise
b - known, observed data

Goal: Approximate x and improve parameters y
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Regularization for Least Squares Systems
The Linear Problem: b = Ax + &
The Nonlinear Problem: b = A(y)x + &

Mathematical Representation

@ We want to find x and y so that
b=A(y)x+e

@ With Tikhonov regularization, solve

A(y) b
W x [0
Some Considerations:

@ Problem is linear in x, nonlinear in y.
@ yeRP, xeR" with p < n.

min

2
X?y 2
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Regularization for Least Squares Systems
The Linear Problem: b = Ax + &
The Nonlinear Problem: b = A(y)x + &

Separable Nonlinear Least Squares

Variable Projection Method:
@ Implicitly eliminate linear term.
@ Optimize over nonlinear term.

Some general references:
Golub and Pereyra, SINUM 1973 (also IP 2003)
Kaufman, BIT 1975
Osborne, SINUM 1975 (also ETNA 2007)
Ruhe and Wedin, SIREV, 1980
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Regularization for Least Squares Systems
The Linear Problem: b = Ax + &
The Nonlinear Problem: b = A(y)x + &

Variable Projection Method

Instead of optimizing over both x and y:

2
min ¢(X,y) = min [ A)(j,) ]x— [ g }
2
Minimize the reduced cost functional:
miny(y),  ¥(y) = ¢(x(y).y)
where x(y) is the solution of
2
min ¢(X,y) = min [ A)(j’) ]x— [ g }
X X 2
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Regularization for Least Squares Systems
The Linear Problem: b = Ax + &
The Nonlinear Problem: b = A(y)x + &

Variable Projection Method

Instead of optimizing over both x and y:

2
min ¢(X,y) = min [ A)(\}') ]x— [ g }
2
Minimize the reduced cost functional:
miny(y), w(y) =o(x(y).y)
where x(y) is the solution of
2
min ¢(X,y) = min [ A)(\\Il) ]x— [ g }
X X >
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Regularization for Least Squares Systems
The Linear Problem: b = Ax + &
The Nonlinear Problem: b = A(y)x + &

Gauss-Newton Algorithm

choose initial yo
fork=0,1,2,...

X, = argmin
X

0[5 ]

F = b— A(yk)Xk

2

d, = arg mdin [Jyd —rgll,

Vi1 = Yk +dk
end
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Regularization for Least Squares Systems
The Linear Problem: b = Ax + &
The Nonlinear Problem: b = A(y)x + &

Gauss-Newton Algorithm with HyBR

choose initial yo
fork=0,1,2,...

= Xx =HyBR(A(y«),b)

X, = argmin
X

0 (5]

F = b— A(yk) Xk

2

di = argmin [|J,d —ri[l,

Vi1 = Yk +dk

end
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Regularization for Least Squares Systems

The Linear Problem: b = Ax + &
The Nonlinear Problem: b = A(y)x + &

Numerical Results: Super-resolution

Inverse
Problem

Julianne Chung Numerical Methods for -Scale lll-Posed Inverse Problems



Regularization for Least Squares Systems

The Linear Problem: b = Ax + &
The Nonlinear Problem: b = A(y)x + &

Numerical Results: Super-resolution

Inverse

Problem
Goal:

(@)
Q

uss-Newton lterations Reconstructed Image
Error of yi Ak

0.5810 0.2519
0.3887 0.2063
0.2495 0.1765
0.1546 0.1476
0.1077 0.1254
0.0862 0.1139
0.0763 0.1102
0.0706 0.1077
0.0667 0.1067

oOoNoOO O~ WN—=O

Julianne Chung Numerical Methods for Large-Scale lll-Posed Inverse Problems



High Performance Implementation Mathematical Problem
2D Data Distribution

Outline

e High Performance Implementation
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High Performance Implementation Mathematical Problem
2D Data Distribution

Mathematical Model

1 5
min §||Ax— b||

where
A b

An bmn
Some Applications:

@ Super-resolution
@ Tomography - Cryo-Electron Microscopy

Julianne Chung Numerical Methods f ge-Scale lll-Posed Inverse Problems



High Performance Implementation Mathematical Problem
2D Data Distribution

An Application: Cryo-EM

Given:
Inverse
Problem

Goal:
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High Performance Implementation Mathematical Problem
2D Data Distribution

An Application: Cryo-EM

Given:
Inverse
Problem
1 m
minp(x) = 5 ZHA,X— bj||?
i=1
where

xeR™ represents the 3-D electron density map
b; € R”z(i =1,2,...,m) represents 2-D projection images
A =A(y)) € RMxm represents projection

y; - translation parameters and Euler angles
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High Performance Implementation Mathematical Problem
2D Data Distribution

Parallelization using 1D data distribution

Back Projected
Volume

m
=Y ATp;
fu1

Distribution Independent Combination:
EM 2D of Images and Partial All reduce
Images Angles Reconstructions
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High Performance Implementation Mathematical Problem
2D Data Distribution

New Parallelization using 2D data distribution

@ Distribute images along rows.
@ Distribute volume along columns.

N 2 3
< N
<E
0
<
< B
bs
|
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High Performance Implementation Mathematical Problem
2D Data Distribution

Forward and Back Projection on 2D Topology

x() Vpx)

x® Vpx@
A=| A AP A | x= Vo=|

x(7e) V:Ox("c)

Ne . )
Ax=>S A% = Al Reduce along Rows
]
=

m
Vo = > (A)Tr;y = Al Reduce along Columns

i=1
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High Performance Implementation Mathematical Problem
2D Data Distribution

New MPI Parallel Performance

@ Good for very large problems

@ Adenovirus Data Set: 500 x 500 pixels, 959 (x60) images
[ n [ nc ]| Wall clock seconds | speedup |

137 | 7 9635 1
959 | 2 4841 2
959 | 4 2406 4
959 | 8 1335 7.2
959 | 16 609 15.8

@ SPARX software package
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Motivation
Mathematical Problem

Polyenergetic Tomosynthesis Reconstruction Algorithms

Outline

e Polyenergetic Tomosynthesis
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Motivation
Mathematical Problem

Polyenergetic Tomosynthesis Reconstruction Algorithms

Digital Tomosynthesis

@ X-ray Mammography
@ Digital Tomosynthesis
@ Computed Tomography

-
2}

Julianne Chung Numerical Methods f ge-Scale lll-Posed Inverse Problems



tomomovie.mov
Media File (video/quicktime)


Motivation
Mathematical Problem
Reconstruction Algorithms

Polyenergetic Tomosynthesis

An Inverse Problem

True Images

@ Given: 2D projection images

@ Goal: Reconstruct a 3D volume
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Motivation
Mathematical Problem
Reconstruction Algorithms

Polyenergetic Tomosynthesis

Simulated Problem

Original object: 21 gggicggg |T)r:ea|gses: Reconstruction:
300 x 300 x 200 voxels P 150 x 150 x 50 voxels

(10 x 15 cm)
(7.5 x 7.5 x 5 cm) _30° to 30°. every 3° (7.5 x 7.5 x 5 cm)

X-ray Tube 2

Compression Plate

Compresse@ Support Plate

Detector

Front view Side view with X-ray tube at 0°
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Motivation
Polyenergetic Tomosynthesis Mathematical Problem

Reconstruction Algorithms

Polyenergetic Model

26keY
@ Incident X-ray has a distribution Eie:
i e

of energies e

@ 43 energy levels: 5keV - 26keV

Ohject
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Motivation
Mathematical Problem
Reconstruction Algorithms

Polyenergetic Tomosynthesis

Polyenergetic Model

26keY
@ Incident X-ray has a distribution Eie:
i e

of energies e

@ 43 energy levels: 5keV - 26keV

Ohject

Consequences:

@ Beam Hardening: Low energy photons preferentially
absorbed

@ Unnecessary radiation
@ Linear attenuation coefficient depends on energy
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Polyenergetic Tomosynthesis

Motivation
Mathematical Problem
Reconstruction Algorithms

Monoenergetic Algorithm

@ Lange and Fessler's Convex
MLEM Algorithm

@ Beam hardening artifacts

Monoenergetic Reconstruction

Julianne Chung

Numerical Methods for Large-Scale lll-Posed Inverse Problems



Motivation
Mathematical Problem

Polyenergetic Tomosynthesis Reconstruction Algorithms

Previous Methods

Methods for eliminating beam hardening artifacts:

@ Dual Energy Methods

Alvarez and Macovski (1976), Fessler et al (2002)
@ FBP + Segmentation

Joseph and Spital (1978)
@ Filter function based on density

De Man et al (2001), Elbakri and Fessler (2003)
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Motivation
Mathematical Problem
Reconstruction Algorithms

Polyenergetic Tomosynthesis

A Polyenergetic Mathematical Representation

Energy-dependent Attenuation Coefficient:

u(e)V) = s(e)xV¥) + z(e)

where
xU) represents unknown glandular fraction of j# voxel
s(e) and z(e) are known linear fit coefficients
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Motivation
Mathematical Problem
Reconstruction Algorithms

Computing Image Projections

Polyenergetic Tomosynthesis

@ Ray Trace:

N

/ u(e)dl ~ Y u(e)?ald
L;

=1
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Motivation
Mathematical Problem
Reconstruction Algorithms

Computing Image Projections

Polyenergetic Tomosynthesis

@ Ray Trace:

N

/ u(e)dl ~ Y u(e)?ald
L

=1

@ Vector Notation

u(e) = s(e)x+z(e) = s(e)Apx+z(e)Ayl
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Motivation
Mathematical Problem
Reconstruction Algorithms

Computing Image Projections

Polyenergetic Tomosynthesis

@ Ray Trace:

@ Vector Notation

u(e) =s(e)x+z(e) = s(e)Apx+z(e)Asl

Polyenergetic Projection:
Ne

Z o(e) exp (—[s(e)AsXirue + 2(€)Ap1])

e=1
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Motivation
Mathematical Problem

Polyenergetic Tomosynthesis Reconstruction Algorithms

Statistical Model

Given x, define for pixel i the expected value:

Ne

BY) =" ole) exp (~[s(e)Ax + z(e)Ay1]).

e=1

Let () be the statistical mean of the noise.

Then b{’ + () € R is the expected or average observation.

Observed Data: b() ~ P0|sson(b( 77('))
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Motivation
Mathematical Problem

Polyenergetic Tomosynthesis Reconstruction Algorithms

Statistical Model

Likelihood Function:

M
p(bg, X) He

i=1 b(’

- +77 I))(b(l)—l— (/))b(

Negative Log Likelihood Function:

—Ly(x) = —logp(by,x)
M

= S (B +7D) - b 10g(B’ + 7D)
i=1
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Motivation
Mathematical Problem

Polyenergetic Tomosynthesis Reconstruction Algorithms

Volume Reconstruction

Maximum Likelihood Estimate:
Ng

XyLe = argmin < >~ —L(X)
X =1
Numerical Optimization:
@ Gradient Descent:
Xki1 = Xk — axVL(Xk), where VL(xx)=ATv
@ Newton Approach:
Xkr1 = Xk — OzkH;1VL(Xk), where Hji = ATWkA
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Motivation
Mathematical Problem

Polyenergetic Tomosynthesis Reconstruction Algorithms

Numerical Results

@ Initial guess: 50% glandular tissue
@ Newton-CG inner stopping criteria:

e Max 50 inner iterations
@ residual tolerance < 0.1

Gradient Descent Newton lteration
lteration  Relative Error | lteration  Relative Error  CG Iterations
0 1.7691 0 1.7691 -
1 1.0958 1 1.1045 3
5 0.8752 2 0.8630 2
10 0.8320 3 0.8403 2
25 0.8024 4 0.7925 16
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Motivation
Mathematical Problem
Reconstruction Algorithms

Polyenergetic Tomosynthesis

Compare Images

Mono-convex

Gradient Newton-CG
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Motivation
Mathematical Problem

Polyenergetic Tomosynthesis Reconstruction Algorithms

Some Considerations

@ Convexity
Severe nonlinearities = Cost function is not convex

@ Regularization
Xpap = argmin{—L(x) + AR(x)}
X
e Need good regularizer, R(x):

Huber penalty, Markov Random Fields, Total Variation
e Need good methods for choosing A
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Concluding Remarks

Outline

e Concluding Remarks

Julianne Chung Numerical Methods for Large-Scale lll-Posed Inverse Problems



Concluding Remarks

Concluding Remarks

@ Inverse problems arise in many imaging applications.

@ Hybrid methods:

o efficient solvers for large scale LS problems
e effective linear solvers for nonlinear problems

@ Separable nonlinear LS models exploit high level structure

@ High performance implementation allows reconstruction of
large volumes with high resolution

@ Polyenergetic tomosynthesis:

e Novel mathematical framework
e Standard optimization made feasible
o Better reconstructed images
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Concluding Remarks
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