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What is an inverse problem?

Physical SystemInput Signal Output Signal

Forward Model
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Application: Image Deblurring

Given: Blurred image and some
information about the blurring

Goal: Compute approximation of
true image
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Application: Super-Resolution Imaging

Given: LR images and some
information about the motion
parameters

1−th low resolution image
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Application: Super-Resolution Imaging

Given: LR images and some
information about the motion
parameters

8−th low resolution image
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Application: Super-Resolution Imaging

Given: LR images and some
information about the motion
parameters

15−th low resolution image
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Application: Super-Resolution Imaging

Given: LR images and some
information about the motion
parameters

22−th low resolution image
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Application: Super-Resolution Imaging

Given: LR images and some
information about the motion
parameters

29−th low resolution image
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Application: Super-Resolution Imaging

Given: LR images and some
information about the motion
parameters

Goal: Improve parameters and
approximate HR image
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Application: Tomographic Imaging

Given: 2D projection images

Goal: Approximate 3D volume
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Application: Tomographic Imaging

Given: 2D projection images

Goal: Approximate 3D volume
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What is an Ill-Posed Inverse Problem?

Hadamard (1923): A problem is ill-posed if the solution
does not exist,
is not unique, or
does not depend continuously on the data.
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What is an Ill-Posed Inverse Problem?

Hadamard (1923): A problem is ill-posed if the solution
does not exist,
is not unique, or
does not depend continuously on the data.
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True image: Blurred & noisy image: 

Inverse Solution:
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The Linear Problem: b = Ax + ε

The Nonlinear Problem: b = A(y)x + ε
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The Linear Problem: b = Ax + ε

The Nonlinear Problem: b = A(y)x + ε

The Linear Problem

b = Ax + ε

where
x ∈ Rn - true data
A ∈ Rm×n - large, ill-conditioned matrix
ε ∈ Rm - noise, statistical properties may be known
b ∈ Rm - known, observed data

Goal: Given b and A, compute approximation of x

Julianne Chung Numerical Methods for Large-Scale Ill-Posed Inverse Problems



Regularization for Least Squares Systems
High Performance Implementation

Polyenergetic Tomosynthesis
Concluding Remarks

The Linear Problem: b = Ax + ε

The Nonlinear Problem: b = A(y)x + ε

Regularization

Tikhonov Regularization

min
x

{
||b− Ax||22 + λ2||Lx||22

}
⇔ min

x

∥∥∥∥[ b
0

]
−
[

A
λL

]
x
∥∥∥∥

2

Selecting a good regularization parameter, λ, is difficult
Discrepancy Principle
Generalized Cross-Validation
L-curve

Difficult for large-scale problems
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The Linear Problem: b = Ax + ε

The Nonlinear Problem: b = A(y)x + ε

Illustration of Semi-convergence Behavior

min
x
‖b− Ax‖2
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The Linear Problem: b = Ax + ε

The Nonlinear Problem: b = A(y)x + ε

Illustration of Semi-convergence Behavior

min
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The Linear Problem: b = Ax + ε

The Nonlinear Problem: b = A(y)x + ε

Illustration of Semi-convergence Behavior

min
x
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Either find a good stopping criteria or ...
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The Linear Problem: b = Ax + ε

The Nonlinear Problem: b = A(y)x + ε

Motivation to use a Hybrid Method

... avoid semi-convergence behavior altogether!

Iteration 150

Iteration 0

20 40 60 80 100 120 140
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

 

 

C G LS
HyB R

Iteration

Re
la

tiv
e 

Er
ro

r

Hybrid Method Stabilizes the Error

Julianne Chung Numerical Methods for Large-Scale Ill-Posed Inverse Problems



Regularization for Least Squares Systems
High Performance Implementation

Polyenergetic Tomosynthesis
Concluding Remarks

The Linear Problem: b = Ax + ε

The Nonlinear Problem: b = A(y)x + ε

Previous Work on Hybrid Methods

Regularization embedded in iterative method:

O’Leary and Simmons, SISSC, 1981.
Björck, BIT 1988.
Björck, Grimme, and Van Dooren, BIT, 1994.
Larsen, PhD Thesis, 1998.
Hanke, BIT 2001.
Kilmer and O’Leary, SIMAX, 2001.
Kilmer, Hansen, Espanol, 2006.

Use iterative method to solve regularized problem:
Golub, Von Matt, Numer. Math.,1991
Calvetti, Golub, Reichel, BIT, 1999
Frommer, Maass , SISC, 1999
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The Linear Problem: b = Ax + ε

The Nonlinear Problem: b = A(y)x + ε

Lanczos Bidiagonalization(LBD)

Given A and b, for k = 1,2, ..., compute
W =

[
w1 w2 · · · wk wk+1

]
, w1 = b/||b||

Y =
[

y1 y2 · · · yk
]

B =


α1
β2 α2

. . . . . .
βk αk

βk+1


where W and Y have orthonormal columns, and

AY = WB
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The Linear Problem: b = Ax + ε

The Nonlinear Problem: b = A(y)x + ε

The Projected Problem

After k steps of LBD, we solve the projected LS problem:

min
x∈R(Y)

||b− Ax||2 = min
f
||WT b− Bf||2

where x = Yf.

Remarks:

Ill-posed problem⇒ B may be very ill-conditioned.
B is much smaller than A
Standard techniques (e.g. GCV) to find λ and stopping
point
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The Linear Problem: b = Ax + ε

The Nonlinear Problem: b = A(y)x + ε

Lanczos Hybrid Method in Action: Satellite
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The Linear Problem: b = Ax + ε

The Nonlinear Problem: b = A(y)x + ε

Lanczos Hybrid Method in Action: Satellite
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The Linear Problem: b = Ax + ε

The Nonlinear Problem: b = A(y)x + ε

Lanczos Hybrid Method in Action: Satellite
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The Linear Problem: b = Ax + ε

The Nonlinear Problem: b = A(y)x + ε

A Novel Approach: Weighted GCV

min
f
||WT b− Bf||2

GCV tends to over smooth, use weighted GCV function with
ω < 1:

G(ω, λ) =
n||(I − BB†λ)WT b||2[
trace(I − ωBB†λ)

]2

New adaptive approach to select ω
MATLAB implementation:

>> x = HyBR(A,b);
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The Linear Problem: b = Ax + ε

The Nonlinear Problem: b = A(y)x + ε

Results for Satellite
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The Linear Problem: b = Ax + ε

The Nonlinear Problem: b = A(y)x + ε

The Nonlinear Problem

b = A(y)x + ε

where
x - true data
A(y) - large, ill-conditioned matrix defined by parameters y

(registration, blur, etc.)

ε - additive noise
b - known, observed data

Goal: Approximate x and improve parameters y
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The Linear Problem: b = Ax + ε

The Nonlinear Problem: b = A(y)x + ε

Mathematical Representation

We want to find x and y so that

b = A(y)x + e

With Tikhonov regularization, solve

min
x,y

∥∥∥∥[ A(y)
λI

]
x−

[
b
0

]∥∥∥∥2

2

Some Considerations:
Problem is linear in x, nonlinear in y.
y ∈ Rp, x ∈ Rn, with p � n.
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The Linear Problem: b = Ax + ε

The Nonlinear Problem: b = A(y)x + ε

Separable Nonlinear Least Squares

Variable Projection Method:
Implicitly eliminate linear term.
Optimize over nonlinear term.

Some general references:
Golub and Pereyra, SINUM 1973 (also IP 2003)
Kaufman, BIT 1975
Osborne, SINUM 1975 (also ETNA 2007)
Ruhe and Wedin, SIREV, 1980
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The Linear Problem: b = Ax + ε

The Nonlinear Problem: b = A(y)x + ε

Variable Projection Method

Instead of optimizing over both x and y:

min
x,y

φ(x,y) = min
x,y

∥∥∥∥[ A(y)
λI

]
x−

[
b
0

]∥∥∥∥2

2

Minimize the reduced cost functional:

min
y
ψ(y) , ψ(y) = φ(x(y),y)

where x(y) is the solution of

min
x
φ(x,y) = min

x

∥∥∥∥[ A(y)
λI

]
x−

[
b
0

]∥∥∥∥2

2
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The Linear Problem: b = Ax + ε
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∥∥∥∥[ A(y)
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0

]∥∥∥∥2

2
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min
y
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]∥∥∥∥2
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The Linear Problem: b = Ax + ε

The Nonlinear Problem: b = A(y)x + ε

Gauss-Newton Algorithm

choose initial y0

for k = 0,1,2, . . .

xk = arg min
x

∥∥∥∥[ A(yk )
λk I

]
x−

[
b
0

]∥∥∥∥
2

rk = b− A(yk ) xk

dk = arg min
d
‖Jψd− rk‖2

yk+1 = yk + dk

end
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The Linear Problem: b = Ax + ε

The Nonlinear Problem: b = A(y)x + ε

Gauss-Newton Algorithm with HyBR

choose initial y0

for k = 0,1,2, . . .

xk = arg min
x

∥∥∥∥[ A(yk )
λk I

]
x−

[
b
0

]∥∥∥∥
2
⇒ xk =HyBR(A(yk ),b)

rk = b− A(yk ) xk

dk = arg min
d
‖Jψd− rk‖2

yk+1 = yk + dk

end
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The Linear Problem: b = Ax + ε

The Nonlinear Problem: b = A(y)x + ε

Numerical Results: Super-resolution

Inverse
Problem

Given:

Goal:
———————————————————————————

Gauss-Newton Iterations
Error of yk λk

0 0.5810 0.2519
1 0.3887 0.2063
2 0.2495 0.1765
3 0.1546 0.1476
4 0.1077 0.1254
5 0.0862 0.1139
6 0.0763 0.1102
7 0.0706 0.1077
8 0.0667 0.1067

Reconstructed Image
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Mathematical Problem
2D Data Distribution
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Mathematical Problem
2D Data Distribution

Mathematical Model

min
x

1
2
||Ax− b||2

where

A =

 A1
...

Am

 , b =

 b1
...

bm



Some Applications:
Super-resolution
Tomography - Cryo-Electron Microscopy
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Mathematical Problem
2D Data Distribution

An Application: Cryo-EM

Inverse
Problem

Given:

Goal:

———————————————————————————

min
x
ρ(x) ≡ 1

2

m∑
i=1

||Aix− bi ||2

where
x ∈ Rn3

represents the 3-D electron density map
bi ∈ Rn2

(i = 1,2, ...,m) represents 2-D projection images

Ai = A(yi) ∈ Rn2×n3
represents projection

yi - translation parameters and Euler angles
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2D Data Distribution
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Mathematical Problem
2D Data Distribution

Parallelization using 1D data distribution

EM 2D 
Images

Distribution 
of Images and 

Angles

Independent 
Partial 

Reconstructions

Combination: 
All reduce

Back Projected 
Volume
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Mathematical Problem
2D Data Distribution

New Parallelization using 2D data distribution

Distribute images along rows.
Distribute volume along columns.

p1,1 p1,2

p2,3p2,2p2,1

p1,3

gc2

gr1

b1
b2
b3

b4
b5
b6

x(1)
	 	 x(2)

	 	 x(3)
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Mathematical Problem
2D Data Distribution

Forward and Back Projection on 2D Topology

Ai =
[

A(1)
i A(2)

i · · · A(nc)
i

]
, x =


x(1)

x(2)

...
x(nc)

 ,∇ρ =


∇ρx(1)

∇ρx(2)

...
∇ρx(nc )


———————————————————————————

Aix =
nc∑

j=1

A(j)
i x(j) ⇒ All Reduce along Rows

∇ρx(j) =
m∑

i=1

(A(j)
i )T r(i) ⇒ All Reduce along Columns
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Mathematical Problem
2D Data Distribution

New MPI Parallel Performance

Good for very large problems

Adenovirus Data Set: 500× 500 pixels, 959 (×60) images

nr nc Wall clock seconds speedup
137 7 9635 1
959 2 4841 2
959 4 2406 4
959 8 1335 7.2
959 16 609 15.8

SPARX software package
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Motivation
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Digital Tomosynthesis

X-ray Mammography
Digital Tomosynthesis
Computed Tomography
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Motivation
Mathematical Problem
Reconstruction Algorithms

An Inverse Problem

Given: 2D projection images

Goal: Reconstruct a 3D volume

True Images
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Motivation
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Simulated Problem

Original object:
300× 300× 200 voxels

(7.5× 7.5× 5 cm)

21 projection images:
200× 300 pixels

(10× 15 cm)
−30◦ to 30◦, every 3◦

Reconstruction:
150× 150× 50 voxels

(7.5× 7.5× 5 cm)

Detector

Center of 
 Rotation

Compressed Breast

X-ray Tube

Support Plate

Compression Plate

X-ray Tube

C
hest W

all

Detector

Front view Side view with X-ray tube at 0◦
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Motivation
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Polyenergetic Model

Incident X-ray has a distribution
of energies
43 energy levels: 5keV - 26keV

Consequences:
Beam Hardening: Low energy photons preferentially
absorbed
Unnecessary radiation
Linear attenuation coefficient depends on energy
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Polyenergetic Model

Incident X-ray has a distribution
of energies
43 energy levels: 5keV - 26keV

Consequences:
Beam Hardening: Low energy photons preferentially
absorbed
Unnecessary radiation
Linear attenuation coefficient depends on energy
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Motivation
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Monoenergetic Algorithm

Lange and Fessler’s Convex
MLEM Algorithm

Beam hardening artifacts

Monoenergetic Reconstruction
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Previous Methods

Methods for eliminating beam hardening artifacts:

Dual Energy Methods
Alvarez and Macovski (1976), Fessler et al (2002)

FBP + Segmentation
Joseph and Spital (1978)

Filter function based on density
De Man et al (2001), Elbakri and Fessler (2003)
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A Polyenergetic Mathematical Representation

Energy-dependent Attenuation Coefficient:

µ(e)(j) = s(e)x (j) + z(e)

Voxel j

where
x (j) represents unknown glandular fraction of j th voxel
s(e) and z(e) are known linear fit coefficients
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Computing Image Projections

Ray Trace:∫
Li

µ(e)dl ≈
N∑

j=1

µ(e)(j)a(ij)

Vector Notation

µ(e) = s(e)x+z(e) ⇒ s(e)Aθx+z(e)Aθ1
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Computing Image Projections

Ray Trace:∫
Li

µ(e)dl ≈
N∑

j=1

µ(e)(j)a(ij)

Vector Notation
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Polyenergetic Projection:
ne∑

e=1

%(e) exp (−[s(e)Aθxtrue + z(e)Aθ1])
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Statistical Model

Given x, define for pixel i the expected value:

b̄(i)
θ =

ne∑
e=1

%(e) exp (−[s(e)Aθx + z(e)Aθ1]).

Let η̄(i) be the statistical mean of the noise.

Then b̄(i)
θ + η̄(i) ∈ R is the expected or average observation.

Observed Data: b(i)
θ ∼ Poisson(b̄(i)

θ + η̄(i))
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Statistical Model

Likelihood Function:

p(bθ,x) =
M∏

i=1

e−(b̄(i)
θ +η̄(i))(b̄(i)

θ + η̄(i))b(i)
θ

b(i)
θ !

Negative Log Likelihood Function:

−Lθ(x) = − log p(bθ,x)

=
M∑

i=1

(b̄(i)
θ + η̄(i))− b(i)

θ log(b̄(i)
θ + η̄(i))
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Volume Reconstruction

Maximum Likelihood Estimate:

xMLE = argmin
x

{ nθ∑
θ=1

−Lθ(x)

}

Numerical Optimization:

Gradient Descent:

xk+1 = xk − αk∇L(xk ), where ∇L(xk ) = AT vk

Newton Approach:

xk+1 = xk − αkH−1
k ∇L(xk ), where Hk = AT WkA
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Numerical Results

Initial guess: 50% glandular tissue
Newton-CG inner stopping criteria:

Max 50 inner iterations
residual tolerance < 0.1

Gradient Descent Newton Iteration
Iteration Relative Error Iteration Relative Error CG Iterations

0 1.7691 0 1.7691 -
1 1.0958 1 1.1045 3
5 0.8752 2 0.8630 2

10 0.8320 3 0.8403 2
25 0.8024 4 0.7925 16
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Compare Images
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Some Considerations

Convexity
Severe nonlinearities⇒ Cost function is not convex

Regularization

xMAP = argmin
x
{−L(x) + λR(x)}

Need good regularizer, R(x):
Huber penalty, Markov Random Fields, Total Variation

Need good methods for choosing λ
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Inverse problems arise in many imaging applications.

Hybrid methods:
efficient solvers for large scale LS problems
effective linear solvers for nonlinear problems

Separable nonlinear LS models exploit high level structure

High performance implementation allows reconstruction of
large volumes with high resolution

Polyenergetic tomosynthesis:
Novel mathematical framework
Standard optimization made feasible
Better reconstructed images
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