# Numerical Methods for Large-Scale III-Posed Inverse Problems

#### Julianne Chung University of Maryland

Collaborators: James G. Nagy (Emory)

Eldad Haber (Emory)

Dianne O'Leary (University of Maryland)

Ioannis Sechopoulos (Emory)

Chao Yang (Lawrence Berkeley National Laboratory)









# What is an inverse problem?



### What is an inverse problem?



### Application: Image Deblurring

- Given: Blurred image and some information about the blurring
- Goal: Compute approximation of true image



### Application: Image Deblurring

- Given: Blurred image and some information about the blurring
- Goal: Compute approximation of true image













22-th low resolution image





- Given: LR images and some information about the motion parameters
- Goal: Improve parameters and approximate HR image



## Application: Tomographic Imaging

- Given: 2D projection images
- Goal: Approximate 3D volume



# Application: Tomographic Imaging

Given: 2D projection images

Goal: Approximate 3D volume



#### What is an III-Posed Inverse Problem?

Hadamard (1923): A problem is ill-posed if the solution

- does not exist,
- is not unique, or
- does not depend continuously on the data.

#### What is an III-Posed Inverse Problem?

Hadamard (1923): A problem is ill-posed if the solution

- does not exist,
- is not unique, or
- does not depend continuously on the data.



#### Outline

- Regularization for Least Squares Systems
- 2 High Performance Implementation
- Polyenergetic Tomosynthesis
- Concluding Remarks

#### Outline

- Regularization for Least Squares Systems
- 2 High Performance Implementation
- Polyenergetic Tomosynthesis
- Concluding Remarks

#### The Linear Problem

$$\mathbf{b} = \mathbf{A}\mathbf{x} + \boldsymbol{arepsilon}$$

#### where

 $\mathbf{x} \in \mathcal{R}^n$  - true data

 $\mathbf{A} \in \mathcal{R}^{m \times n}$  - large, ill-conditioned matrix

 $\varepsilon \in \mathcal{R}^m$  - noise, statistical properties may be known

 $\mathbf{b} \in \mathcal{R}^m$  - known, observed data

Goal: Given **b** and **A**, compute approximation of **x** 

# Regularization

#### Tikhonov Regularization

$$\min_{\mathbf{x}} \left\{ ||\mathbf{b} - \mathbf{A}\mathbf{x}||_2^2 + \lambda^2 ||\mathbf{L}\mathbf{x}||_2^2 \right\} \quad \Leftrightarrow \quad \min_{\mathbf{x}} \left\| \left[ \begin{array}{c} \mathbf{b} \\ \mathbf{0} \end{array} \right] - \left[ \begin{array}{c} \mathbf{A} \\ \lambda \mathbf{L} \end{array} \right] \mathbf{x} \right\|_2$$

- Selecting a good regularization parameter,  $\lambda$ , is difficult
  - Discrepancy Principle
  - Generalized Cross-Validation
  - L-curve
- Difficult for large-scale problems

$$\min_{\boldsymbol{x}} \|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}\|_2$$











Either find a good stopping criteria or ...

#### Motivation to use a Hybrid Method

#### ... avoid semi-convergence behavior altogether!



### Previous Work on Hybrid Methods

#### Regularization embedded in iterative method:

- O'Leary and Simmons, SISSC, 1981.
- Björck, BIT 1988.
- Björck, Grimme, and Van Dooren, BIT, 1994.
- Larsen, PhD Thesis, 1998.
- Hanke, BIT 2001.
- Kilmer and O'Leary, SIMAX, 2001.
- Kilmer, Hansen, Espanol, 2006.

#### Use iterative method to solve regularized problem:

- Golub, Von Matt, Numer. Math.,1991
- Calvetti, Golub, Reichel, BIT, 1999
- Frommer, Maass, SISC, 1999



### Lanczos Bidiagonalization(LBD)

Given **A** and **b**, for k = 1, 2, ..., compute

$$\mathbf{0} \quad \mathbf{W} = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \cdots & \mathbf{w}_k & \mathbf{w}_{k+1} \end{bmatrix}, \quad \mathbf{w}_1 = \mathbf{b}/||\mathbf{b}||$$

$$\mathbf{0} \quad \mathbf{Y} = \begin{bmatrix} \mathbf{y}_1 & \mathbf{y}_2 & \cdots & \mathbf{y}_k \end{bmatrix}$$

$$\mathbf{0} \quad \mathbf{B} = \begin{bmatrix} \alpha_1 & & & & & \\ \beta_2 & \alpha_2 & & & & \\ & \ddots & \ddots & & & \\ & & \beta_k & \alpha_k & & \\ & & & \beta_{k+1} \end{bmatrix}$$

where W and Y have orthonormal columns, and

$$AY = WB$$



### The Projected Problem

After *k* steps of LBD, we solve the *projected* LS problem:

$$\min_{\boldsymbol{x} \in \mathcal{B}(\boldsymbol{Y})} ||\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}||_2 = \min_{\boldsymbol{f}} ||\boldsymbol{W}^T \boldsymbol{b} - \boldsymbol{B}\boldsymbol{f}||_2$$

where  $\mathbf{x} = \mathbf{Yf}$ .

#### Remarks:

- Ill-posed problem ⇒ B may be very ill-conditioned.
- B is much smaller than A
- Standard techniques (e.g. GCV) to find  $\lambda$  and stopping point

#### Lanczos Hybrid Method in Action: Satellite



#### Lanczos Hybrid Method in Action: Satellite



#### Lanczos Hybrid Method in Action: Satellite



## A Novel Approach: Weighted GCV

$$\min_{\boldsymbol{f}} ||\boldsymbol{W}^T\boldsymbol{b} - \boldsymbol{B}\boldsymbol{f}||_2$$

GCV tends to over smooth, use weighted GCV function with  $\omega <$  1:

$$G(\boldsymbol{\omega}, \lambda) = \frac{n||(\boldsymbol{I} - \mathbf{B}\mathbf{B}_{\lambda}^{\dagger})\mathbf{W}^{T}\mathbf{b}||^{2}}{\left[\operatorname{trace}(\boldsymbol{I} - \boldsymbol{\omega}\mathbf{B}\mathbf{B}_{\lambda}^{\dagger})\right]^{2}}$$

New adaptive approach to select  $\omega$  MATLAB implementation:

$$>> \mathbf{x} = HyBR(\mathbf{A}, \mathbf{b});$$

#### Results for Satellite



#### The Nonlinear Problem

$$\mathbf{b} = \mathbf{A}(\mathbf{y})\mathbf{x} + \boldsymbol{\varepsilon}$$

where

x - true data

A(y) - large, ill-conditioned matrix defined by parameters y (registration, blur, etc.)

 $\varepsilon$  - additive noise

**b** - known, observed data

Goal: Approximate x and improve parameters y

#### **Mathematical Representation**

We want to find x and y so that

$$\mathbf{b} = \mathbf{A}(\mathbf{y})\mathbf{x} + \mathbf{e}$$

With Tikhonov regularization, solve

$$\min_{\mathbf{x},\mathbf{y}} \left\| \left[ \begin{array}{c} \mathbf{A}(\mathbf{y}) \\ \lambda \mathbf{I} \end{array} \right] \mathbf{x} - \left[ \begin{array}{c} \mathbf{b} \\ \mathbf{0} \end{array} \right] \right\|_{2}^{2}$$

#### Some Considerations:

- Problem is linear in x, nonlinear in y.
- $\mathbf{y} \in \mathcal{R}^p$ ,  $\mathbf{x} \in \mathcal{R}^n$ , with  $p \ll n$ .

# Separable Nonlinear Least Squares

### Variable Projection Method:

- Implicitly eliminate linear term.
- Optimize over nonlinear term.

### Some general references:

Golub and Pereyra, SINUM 1973 (also IP 2003) Kaufman, BIT 1975 Osborne, SINUM 1975 (also ETNA 2007) Ruhe and Wedin, SIREV. 1980

# Variable Projection Method

Instead of optimizing over both **x** and **y**:

$$\min_{\mathbf{x},\mathbf{y}} \phi(\mathbf{x},\mathbf{y}) = \min_{\mathbf{x},\mathbf{y}} \left\| \begin{bmatrix} \mathbf{A}(\mathbf{y}) \\ \lambda \mathbf{I} \end{bmatrix} \mathbf{x} - \begin{bmatrix} \mathbf{b} \\ \mathbf{0} \end{bmatrix} \right\|_{2}^{2}$$

Minimize the reduced cost functional:

$$\min_{\mathbf{y}} \psi(\mathbf{y}) \,, \quad \psi(\mathbf{y}) = \phi(\mathbf{x}(\mathbf{y}), \mathbf{y})$$

where  $\mathbf{x}(\mathbf{y})$  is the solution of

$$\min_{\mathbf{x}} \phi(\mathbf{x}, \mathbf{y}) = \min_{\mathbf{x}} \left\| \begin{bmatrix} \mathbf{A}(\mathbf{y}) \\ \lambda \mathbf{I} \end{bmatrix} \mathbf{x} - \begin{bmatrix} \mathbf{b} \\ \mathbf{0} \end{bmatrix} \right\|_{2}^{2}$$

## Variable Projection Method

Instead of optimizing over both x and y:

$$\min_{\mathbf{x},\mathbf{y}} \phi(\mathbf{x},\mathbf{y}) = \min_{\mathbf{x},\mathbf{y}} \left\| \begin{bmatrix} \mathbf{A}(\mathbf{y}) \\ \lambda \mathbf{I} \end{bmatrix} \mathbf{x} - \begin{bmatrix} \mathbf{b} \\ \mathbf{0} \end{bmatrix} \right\|_{2}^{2}$$

Minimize the reduced cost functional:

$$\min_{\mathbf{y}} \psi(\mathbf{y}) \,, \quad \psi(\mathbf{y}) = \phi(\mathbf{x}(\mathbf{y}), \mathbf{y})$$

where  $\mathbf{x}(\mathbf{y})$  is the solution of

$$\min_{\mathbf{x}} \phi(\mathbf{x}, \mathbf{y}) = \min_{\mathbf{x}} \left\| \begin{bmatrix} \mathbf{A}(\mathbf{y}) \\ \lambda \mathbf{I} \end{bmatrix} \mathbf{x} - \begin{bmatrix} \mathbf{b} \\ \mathbf{0} \end{bmatrix} \right\|_{2}^{2}$$

# Gauss-Newton Algorithm

choose initial 
$$\mathbf{y}_0$$
 for  $k=0,1,2,\ldots$  
$$\mathbf{x}_k = \arg\min_{\mathbf{x}} \left\| \begin{bmatrix} \mathbf{A}(\mathbf{y}_k) \\ \lambda_k \mathbf{I} \end{bmatrix} \mathbf{x} - \begin{bmatrix} \mathbf{b} \\ \mathbf{0} \end{bmatrix} \right\|_2$$
 
$$\mathbf{r}_k = \mathbf{b} - \mathbf{A}(\mathbf{y}_k) \mathbf{x}_k$$
 
$$\mathbf{d}_k = \arg\min_{\mathbf{d}} \left\| \mathbf{J}_{\psi} \mathbf{d} - \mathbf{r}_k \right\|_2$$
 
$$\mathbf{y}_{k+1} = \mathbf{y}_k + \mathbf{d}_k$$
 end

# Gauss-Newton Algorithm with HyBR

choose initial y<sub>0</sub> for k = 0, 1, 2, ... $\mathbf{x}_k = \arg\min_{\mathbf{x}} \left\| \left\| \begin{array}{c} \mathbf{A}(\mathbf{y}_k) \\ \lambda_k \mathbf{I} \end{array} \right\| \mathbf{x} - \left\| \begin{array}{c} \mathbf{b} \\ \mathbf{0} \end{array} \right\|_{\mathbf{0}} \Rightarrow \mathbf{x}_k = \mathsf{HyBR}(\mathbf{A}(\mathbf{y}_k), \mathbf{b})$  $\mathbf{r}_k = \mathbf{b} - \mathbf{A}(\mathbf{y}_k) \mathbf{x}_k$  $\mathbf{d}_k = \arg\min_{\mathbf{d}} \|\mathbf{J}_{\psi}\mathbf{d} - \mathbf{r}_k\|_2$  $\mathbf{y}_{k+1} = \mathbf{y}_k + \mathbf{d}_k$ end

# Numerical Results: Super-resolution

Inverse Problem







Gauss-Newton Iterations

| Gauss-Newton Relations |                         |             |  |  |  |
|------------------------|-------------------------|-------------|--|--|--|
|                        | Error of $\mathbf{y}_k$ | $\lambda_k$ |  |  |  |
|                        | 0.5810                  | 0.2519      |  |  |  |
| 1                      | 0.3887                  | 0.2063      |  |  |  |
| 2                      | 0.2495                  | 0.1765      |  |  |  |
| 3                      | 0.1546                  | 0.1476      |  |  |  |
| 4                      | 0.1077                  | 0.1254      |  |  |  |
| 5                      | 0.0862                  | 0.1139      |  |  |  |
| 6                      | 0.0763                  | 0.1102      |  |  |  |
| 7                      | 0.0706                  | 0.1077      |  |  |  |
|                        | 0.0667                  | 0.1067      |  |  |  |

Reconstructed Image

# Numerical Results: Super-resolution

Inverse Problem







**Gauss-Newton Iterations** 

| Gauss-Newton iterations |                         |             |  |  |
|-------------------------|-------------------------|-------------|--|--|
|                         | Error of $\mathbf{y}_k$ | $\lambda_k$ |  |  |
| 0                       | 0.5810                  | 0.2519      |  |  |
| 1                       | 0.3887                  | 0.2063      |  |  |
| 2                       | 0.2495                  | 0.1765      |  |  |
| 3                       | 0.1546                  | 0.1476      |  |  |
| 4                       | 0.1077                  | 0.1254      |  |  |
| 5                       | 0.0862                  | 0.1139      |  |  |
| 6                       | 0.0763                  | 0.1102      |  |  |
| 7                       | 0.0706                  | 0.1077      |  |  |
| 8                       | 0.0667                  | 0.1067      |  |  |

Reconstructed Image



### **Outline**

- Regularization for Least Squares Systems
- 2 High Performance Implementation
- Polyenergetic Tomosynthesis
- Concluding Remarks

### **Mathematical Model**

$$\min_{\boldsymbol{x}} \frac{1}{2} ||\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}||^2$$

where

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_m \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \mathbf{b}_1 \\ \vdots \\ \mathbf{b}_m \end{bmatrix}$$

### Some Applications:

- Super-resolution
- Tomography Cryo-Electron Microscopy

# An Application: Cryo-EM

### Inverse Problem

### Given:







$$\min_{\mathbf{x}} \rho(\mathbf{x}) \equiv \frac{1}{2} \sum_{i=1}^{m} ||\mathbf{A}_{i}\mathbf{x} - \mathbf{b}_{i}||^{2}$$

where

 $\mathbf{x} \in \mathcal{R}^{n^3}$  represents the 3-D electron density map

 $\mathbf{b}_i \in \mathcal{R}^{n^2} (i = 1, 2, ..., m)$  represents 2-D projection images

 $\mathbf{A}_i = \mathbf{A}(\mathbf{y}_i) \in \mathcal{R}^{n^2 \times n^3}$  represents projection  $\mathbf{y}_i$  - translation parameters and Euler angles



# An Application: Cryo-EM

Inverse Problem Given:







$$\min_{\mathbf{x}} \rho(\mathbf{x}) \equiv \frac{1}{2} \sum_{i=1}^{m} ||\mathbf{A}_{i}\mathbf{x} - \mathbf{b}_{i}||^{2}$$

where

 $\mathbf{x} \in \mathcal{R}^{n^3}$  represents the 3-D electron density map

 $\mathbf{b}_i \in \mathcal{R}^{n^2} (i = 1, 2, ..., m)$  represents 2-D projection images

 $\mathbf{A}_i = \mathbf{A}(\mathbf{y}_i) \in \mathcal{R}^{n^2 \times n^3}$  represents projection  $\mathbf{y}_i$  - translation parameters and Euler angles

# Parallelization using 1D data distribution



# New Parallelization using 2D data distribution

- Distribute images along rows.
- Distribute volume along columns.



# Forward and Back Projection on 2D Topology

$$\mathbf{A}_{i} = \begin{bmatrix} \mathbf{A}_{i}^{(1)} & \mathbf{A}_{i}^{(2)} & \cdots & \mathbf{A}_{i}^{(n_{c})} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} \mathbf{x}_{i}^{(1)} \\ \mathbf{x}_{i}^{(2)} \\ \vdots \\ \mathbf{x}_{i}^{(n_{c})} \end{bmatrix}, \nabla \rho = \begin{bmatrix} \nabla \rho_{\mathbf{x}_{i}^{(1)}} \\ \nabla \rho_{\mathbf{x}_{i}^{(2)}} \\ \vdots \\ \nabla \rho_{\mathbf{x}_{i}^{(n_{c})}} \end{bmatrix}$$

$$\mathbf{A}_i \mathbf{x} = \sum_{i=1}^{n_c} \mathbf{A}_i^{(j)} \mathbf{x}^{(j)} \quad \Rightarrow \quad \text{All Reduce along Rows}$$

$$\nabla \rho_{\mathbf{x}^{(j)}} = \sum_{i=1}^{m} (\mathbf{A}_{i}^{(j)})^{\mathsf{T}} \mathbf{r}_{(i)} \quad \Rightarrow \quad \mathsf{All Reduce along Columns}$$

### New MPI Parallel Performance

- Good for very large problems
- Adenovirus Data Set:  $500 \times 500$  pixels, 959 (×60) images

| n <sub>r</sub> | nc | Wall clock seconds | speedup |  |
|----------------|----|--------------------|---------|--|
| 137            | 7  | 9635               | 1       |  |
| 959            | 2  | 4841               | 2       |  |
| 959            | 4  | 2406               | 4       |  |
| 959            | 8  | 1335               | 7.2     |  |
| 959            | 16 | 609                | 15.8    |  |

SPARX software package

### Outline

- Regularization for Least Squares Systems
- 2 High Performance Implementation
- Polyenergetic Tomosynthesis
- Concluding Remarks

# Digital Tomosynthesis

- X-ray Mammography
- Digital Tomosynthesis
- Computed Tomography



### An Inverse Problem

• Given: 2D projection images

Goal: Reconstruct a 3D volume

# True Images

### Simulated Problem

### Original object:

 $300 \times 300 \times 200$  voxels  $(7.5 \times 7.5 \times 5 \text{ cm})$ 

### 21 projection images:

 $200 \times 300$  pixels  $(10 \times 15$  cm)  $-30^{\circ}$  to  $30^{\circ}$ , every  $3^{\circ}$ 

### Reconstruction:

 $150 \times 150 \times 50$  voxels  $(7.5 \times 7.5 \times 5 \text{ cm})$ 



Front view



Side view with X-ray tube at 0°

# Polyenergetic Model

- Incident X-ray has a distribution of energies
- 43 energy levels: 5keV 26keV



### Consequences

- Beam Hardening: Low energy photons preferentially absorbed
- Unnecessary radiation
- Linear attenuation coefficient depends on energy



# Polyenergetic Model

- Incident X-ray has a distribution of energies
- 43 energy levels: 5keV 26keV



### Consequences:

- Beam Hardening: Low energy photons preferentially absorbed
- Unnecessary radiation
- Linear attenuation coefficient depends on energy



# Monoenergetic Algorithm

- Lange and Fessler's Convex MLEM Algorithm
- Beam hardening artifacts

# Monoenergetic Reconstruction

### **Previous Methods**

### Methods for eliminating beam hardening artifacts:

- Dual Energy Methods
   Alvarez and Macovski (1976), Fessler et al (2002)
- FBP + Segmentation
   Joseph and Spital (1978)
- Filter function based on density
   De Man et al (2001), Elbakri and Fessler (2003)

# A Polyenergetic Mathematical Representation

**Energy-dependent Attenuation Coefficient:** 

$$\mu(e)^{(j)} = s(e)x^{(j)} + z(e)$$





where

 $x^{(j)}$  represents unknown glandular fraction of  $j^{th}$  voxel s(e) and z(e) are known linear fit coefficients

# **Computing Image Projections**

Ray Trace:

$$\int_{L_i} \mu(e) dl \approx \sum_{j=1}^N \mu(e)^{(j)} a^{(ij)}$$

Vector Notation

$$\mu(e) = s(e)\mathbf{x} + z(e) \Rightarrow s(e)\mathbf{A}_{\theta}\mathbf{x} + z(e)\mathbf{A}_{\theta}\mathbf{1}$$



# Computing Image Projections

Ray Trace:

$$\int_{L_i} \mu(e) dl \approx \sum_{j=1}^N \mu(e)^{(j)} a^{(ij)}$$

Vector Notation

$$\mu(e) = s(e)\mathbf{x} + z(e) \quad \Rightarrow \quad s(e)\mathbf{A}_{\theta}\mathbf{x} + z(e)\mathbf{A}_{\theta}\mathbf{1}$$



# **Computing Image Projections**

Ray Trace:

$$\int_{L_i} \mu(e) dl \approx \sum_{j=1}^N \mu(e)^{(j)} a^{(ij)}$$

Vector Notation



$$\mu(e) = s(e)\mathbf{x} + z(e) \quad \Rightarrow \quad s(e)\mathbf{A}_{\theta}\mathbf{x} + z(e)\mathbf{A}_{\theta}\mathbf{1}$$

Polyenergetic Projection:

$$\sum_{e=1}^{n_e} \varrho(e) \exp\left(-[s(e)\mathbf{A}_{\theta}\mathbf{x}_{true} + z(e)\mathbf{A}_{\theta}\mathbf{1}]\right)$$

### Statistical Model

Given **x**, define for pixel *i* the expected value:

$$ar{b}_{ heta}^{(i)} = \sum_{e=1}^{n_e} arrho(e) \exp\left(-[s(e)\mathbf{A}_{ heta}\mathbf{x} + z(e)\mathbf{A}_{ heta}\mathbf{1}]
ight).$$

Let  $\bar{\eta}^{(i)}$  be the statistical mean of the noise.

Then  $ar{b}_{\theta}^{(i)} + ar{\eta}^{(i)} \in \mathcal{R}$  is the expected or average observation.

Observed Data: 
$$b_{ heta}^{(i)} \sim \mathsf{Poisson}(ar{b}_{ heta}^{(i)} + ar{\eta}^{(i)})$$

### Statistical Model

Likelihood Function:

$$p(\mathbf{b}_{\theta}, \mathbf{x}) = \prod_{i=1}^{M} \frac{e^{-(\bar{b}_{\theta}^{(i)} + \bar{\eta}^{(i)})} (\bar{b}_{\theta}^{(i)} + \bar{\eta}^{(i)})^{b_{\theta}^{(i)}}}{b_{\theta}^{(i)}!}$$

Negative Log Likelihood Function:

$$\begin{aligned} -L_{\theta}(\mathbf{x}) &= -\log p(\mathbf{b}_{\theta}, \mathbf{x}) \\ &= \sum_{i=1}^{M} (\bar{b}_{\theta}^{(i)} + \bar{\eta}^{(i)}) - b_{\theta}^{(i)} \log(\bar{b}_{\theta}^{(i)} + \bar{\eta}^{(i)}) \end{aligned}$$

### Volume Reconstruction

Maximum Likelihood Estimate:

$$\mathbf{x}_{MLE} = \operatorname*{argmin}_{\mathbf{x}} \left\{ \sum_{\theta=1}^{n_{\theta}} -L_{\theta}(\mathbf{x}) \right\}$$

### Numerical Optimization:

• Gradient Descent:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla L(\mathbf{x}_k), \text{ where } \nabla L(\mathbf{x}_k) = \mathbf{A}^T \mathbf{v}_k$$

Newton Approach:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \mathbf{H}_k^{-1} \nabla L(\mathbf{x}_k), \text{ where } \mathbf{H}_k = \mathbf{A}^T \mathbf{W}_k \mathbf{A}$$

### **Numerical Results**

- Initial guess: 50% glandular tissue
- Newton-CG inner stopping criteria:
  - Max 50 inner iterations
  - residual tolerance < 0.1</li>

| Gradient Descent |                | Newton Iteration |                |               |
|------------------|----------------|------------------|----------------|---------------|
| Iteration        | Relative Error | Iteration        | Relative Error | CG Iterations |
| 0                | 1.7691         | 0                | 1.7691         | =             |
| 1                | 1.0958         | 1                | 1.1045         | 3             |
| 5                | 0.8752         | 2                | 0.8630         | 2             |
| 10               | 0.8320         | 3                | 0.8403         | 2             |
| 25               | 0.8024         | 4                | 0.7925         | 16            |

# Compare Images



### Some Considerations

- Convexity
   Severe nonlinearities ⇒ Cost function is not convex
- Regularization

$$\mathbf{x}_{MAP} = \underset{\mathbf{x}}{\operatorname{argmin}} \{ -L(\mathbf{x}) + \lambda \mathbf{R}(\mathbf{x}) \}$$

- Need good regularizer, R(x):
   Huber penalty, Markov Random Fields, Total Variation
- Need good methods for choosing  $\lambda$

### Outline

- Regularization for Least Squares Systems
- 2 High Performance Implementation
- Polyenergetic Tomosynthesis
- Concluding Remarks

# **Concluding Remarks**

- Inverse problems arise in many imaging applications.
- Hybrid methods:
  - efficient solvers for large scale LS problems
  - effective linear solvers for nonlinear problems
- Separable nonlinear LS models exploit high level structure
- High performance implementation allows reconstruction of large volumes with high resolution
- Polyenergetic tomosynthesis:
  - Novel mathematical framework
  - Standard optimization made feasible
  - Better reconstructed images



### References

- Linear LS (HyBR):
  - Chung, Nagy, O'Leary. ETNA (2008)
  - http://www.cs.umd.edu/~jmchung/Home/HyBR.html
- Nonlinear LS:
  - Chung, Haber, Nagy. Inverse Problems (2006)
  - Chung, Nagy. Journal of Physics Conference Series (2008)
  - Chung, Nagy. SISC (Accepted 2009)
- High Performance Computing:
  - Chung, Sternberg, Yang. Int. J. High Perf. Computing (Accepted 2009)
  - Project featured in DOE publication, DEIXIS 2009
- Digital Tomosynthesis:
  - Chung, Nagy, Sechopoulos. (Submitted 2009)

# Thank you!

