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What is filtering?

1. Forecast (Prediction) 2. Analysis (Correction)
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The correction step is an application of Bayesian update

p(um+1|m+1) = p(um+1|m’Vm+1) ~ p(um+1|m)p(vm+1|um+1\m)

Kalman filter formula produces the optimal unbiased posterior
mean and covariance by assuming linear model and Gaussian
observations and forecasts errors.
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The standard Kalman filter algorithm for solving;:

Un+1 = Fum + F'm + Om+1

Vm = Gum+ oy,
Forecast (Prediction)

A) L_lm+1|m = FDm|m + ?ma
B) Rm—‘rl\m = FRm\mF* + R,
Analysis (Correction)
D) Umitmi1 = (Z — Kmi1G)Umi1jm + Km+1Vm+1

E) Rm+1|m+1 = (I - Km—l—lG)Rm-‘rl\ma
F) Kmi1=Rmi1mG’ (GRmi1mG ™ + R%) 7.
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Example of application: predicting path of hurricane
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Computational and Theoretical Issues:

» How to handle large system? Perhaps N = 10° state variables
(e.g., 200 km resolved Global Weather Model)

» Where is the computational burden? Propagating covariance
matrix of size N x N (6N minutes = 300,000 hours).

» Handling nonlinearity! Why not particle filter? Convergence
requires ensemble size that grows exponentially with respect to
the ensemble spread relative to observation errors rather than
to the state dimension per se(Bengtsson, Bickel, and Li 2008).

» Some successful strategies: Ensemble Kalman filters (ETKF
of Bishop et al. 2001, EAKF of Anderson 2001). Each
involves computing singular value decomposition (SVD).

» However, these accurate filters are not immune from
" catastrophic filter divergence” (diverge beyond machine
infinity) when observations are sparse, even when the true
signal is a dissipative system with "absorbing ball property”.



Filtering in Frequency space

Real Space

Fourier Space

Independent Fourier
Coefficient:
Langevin equation

Fourier Domain
Kalman Filter

Simplest Turbulent Model FT
Constant Coefficient >
Linear Stochastic PDE
A
Innovative
Classical Ensemble Strategy
Kalman Filter Kalman Filter
Y
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Noisy Observations >

Fourier Coefficients
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Filtering Stochastically forced advection-diffusion equation

du(x,t) 0 -
o = 5 u(x,t) + F(x,t)




Filtering Stochastically forced advection-diffusion equation

8”5(; ) _ —éfxu(x, t) + F(x, t) + u%u(x, t) + o (x)W(t)




Filtering Stochastically forced advection-diffusion equation

du(x,t) 0 £ 0 '
T — _&u(x7 t)+F(X, t)‘f’NWU(X’ t)+U(X)W(t)
V(Sejatm) = U(>~<j;tm)+f7ﬁw )?J :ji’a (2N+1)77:27T'

where 09, ~ N(0, r°).



Filtering Stochastically forced advection-diffusion equation

f’”f;t’t) - —éfxu(x, t) + F(x, t) + u%u(x, t) + o (x)W(t)

V(% tm) = u(Xj,tm)+ 0%, X =jh, (2N +1)h = 27.
where 09, ~ N(0, r°).

In Fourier Domain, we reduce filtering (2N+1) dimensional
problem to filtering decoupled scalar stochastic Langevin

equations:
din(t) = [(—pk? —ik)i(t) + Fi(t)]dt + ordW(t)
Ok,m = ak,m + 6/?7m

where 67 |~ N(0,r°/(2N +1)).



How to deal with Sparse Regularly Spaced Observations?
ALIASING !

m=25, I=3, k=2, N=5

1 [T 177
/ \ I\ \ sin(25x)
08 ‘ / \\ /1) IN I\ sin(3x) i
b \ | I —e— sin(3xj)=sin(25xl)
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Recall Aliasing Formula:

> Fine mesh: f(x;) = 3 <n Frine (k)€ where xj = jh and

(2N + 1)h = 2r.
> Coarse mesh: f(%X;) = ZIZISM ?Coa,se(f)eib?f where X; = jh and
(2M + 1)h = 2.

> Suppose the coarse grid points X; coincide with the fine mesh
grid points x; at every P = (2N +1)/(2M + 1) fine grid

points.
> Since elk% = (l(tHa(2M+1))% — (il
» We deduce
?coarse(f) = Z ?ﬁne(kj% |£| < /\/]’
ki€ A(£)

where A(¢) ={k: |k| < N,k =0+ q(2M +1),q € Z}



Consider the following sparse observations: 123 grid pts (61
modes) but only 41 observations (20 modes) available

Physical Space

BN

sparse observations for P=3

Fourier Space

: : e
o ’VK 7% :

aliasing set A(1) = {1,-40,42} for P=3 and M=20

aliasing set A(11) = {11,-30,52} for P=3 and M=20




Aliasing Formula:
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Aliasing Formula:
Observation at time t,, becomes:

‘A/é,m = § akj,m + 6Zm7 = Ga&m + &Zm
kjE.A(f)

where G =[1,1,...,1] and 6§, ~ N(0,r°/(2M +1)).
Reduced Filters
» With the aliasing formula above, we reduce filtering (2N + 1)
dimensional system with (2M + 1) observations, where
M < N, to decoupled P = (2N + 1)/(2M + 1) dimensional
problem with scalar observations (FDKF).

» When the energy spectrum of the system decays as a function

of wavenumbers, we can ignore the high wavenumbers (e.g.,
RFDKF, SDAF).



Decorrelation time vs

Decorrelation time

observation time:

Decorrelation time v observation time
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Ensemble Kalman Filter diverges with ensemble size

150 > N = 123. Extreme event,
Aty =0.1,E, = k53, P =3,r°=2.05

ETKF, at T=100At, corr=0.78891

ETKF, <corr>=0.86703
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Reduced Filter produces high skill Spontaneous development of
extreme event for At, = 0.1 and E;, = k_5/3, P=3,r°=205

SDAF, <corr>=0.98516 SDAF, at T=1004At, corr=0.95751
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unfiltered
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u(x,1004t)

15
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Summary of Part I:

» In our assessment, we find that filtering sparsely observed
linear problem with ensemble Kalman filter with ensemble size
larger than the model dimensionality does not guaranteed
convergence solution.

» FDKF suggests that ignoring the cross covariance between
different aliasing sets is not only computationally
advantageous but it also produces more accurate solutions.

» Intuitively, this works because the reduced filter avoids the
spurious correlations between different wave numbers.



Nonlinearity

Radical Filtering Strategy for Nonlinear System

) FT
Stochastically > Uncoupled

forced linear PDE Langevin eqn

Replace the Nonlinear terms
with an Ornstein-Uhlenbeck

process
Nonlinear Chaotic FT Coupled nonlinear
Dynamical —®| ODE through
Systems nonlinear terms




Filtering turbulent nonlinear dynamical systems

L-96 model (Lorenz 1996), 40-dim, “absorbing ball property”.
duj

5 = W g2y —u+F =0, -1

)\1 N+ KS Tcorr
1.02 | 12 | 5547 | 8.23
1.74 | 13 | 10.94 | 6.704
3.945 | 16 | 27.94 | 5.594

Weakly chaotic
Strongly chaotic
Fully turbulent

5 © o™

F=6 F=8

time




The “poorman’s” Climatological Stochastic Model (CSM):
> Fourier coefficients of normalized L-96 [MAGO5]:
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The “poorman’s” Climatological Stochastic Model (CSM):
> Fourier coefficients of normalized L-96 [MAGO5]:

dig(t) = [(—di + iwi) ik (t) + E,(F — )k o] dt + NL
> Replace the nonlinearity with Ornstein-Uhlenbeck process:
di(t) = [(—7k +iwk) ik (t) + E, (F — 0)dk o] dt + o dWie(t).

» Fit the damping coefficient v, and stochastic noise strength
ok to the equilibrium variance and correlation time.



Equilibrium Variance and Correlation Time

Variance

Rescaled variance spectrum

Correlation time

Rescaled correlation time

8 12
Wavenumbers



Regularly spaced sparse observations: weakly chaotic regime
F=6,P=2r°=1.96,At =0.234 .

This is a regime where EAKF true is superior.

perfect model | RMS | corr.
EAKF true 0.82 | 0.95
ETKF true o0 -
No Filter 2.8 -
model error | RMS | corr.
EAKF CSM | 2.20 | 0.64
ETKF CSM | 2,50 | 0.55
FDKF CSM | 2.07 | 0.69




Regularly spaced sparse observations: weakly chaotic regime
F=6,P=2r°=1.96,At =0.234

EAKF true EAKF CSM

[} 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
space space
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Regularly spaced sparse observations: fully turbulent regime
F=16,P =2,r° =0.81, At = 0.078.

This is a regime where FDKF is superior.

Scheme RMS | corr.
EAKF true s}
ETKF true o0 -

No Filter 6.3 0
model error | RMS | corr.
EAKF CSM | 5.15 | 0.61
ETKF CSM | 5.80 | 0.54
FDKF CSM | 4.80 | 0.66




Regularly spaced sparse observations: fully turbulent regime
F=16,P=2,r°=0.81,At =0.078

EAKF true EAKF CSM

0 5 10 15 20 25 30 35 40
space

ETKF CSM FDKF CSM




Summary of Part II:



Summary of Part II:

» We demonstrate that in the fully turbulent regime, perfect
model is not necessarily needed for filtering. In our example,
we encounter an ensemble collapse which yields filter
divergence beyond machine infinity.



Summary of Part II:

» We demonstrate that in the fully turbulent regime, perfect
model is not necessarily needed for filtering. In our example,
we encounter an ensemble collapse which yields filter
divergence beyond machine infinity.

» In the presence of model errors through CSM, our reduced
filtering strategy produces better solutions.



Summary of Part II:

» We demonstrate that in the fully turbulent regime, perfect
model is not necessarily needed for filtering. In our example,
we encounter an ensemble collapse which yields filter
divergence beyond machine infinity.

» In the presence of model errors through CSM, our reduced
filtering strategy produces better solutions.

» Practically, our radical strategy is independent of tunable
parameters, SVD, and ensemble size.



Online Model Error Estimation Strategy

The simplest contemporary strategy to cope with model errors for
filtering with an imperfect model nonlinear dynamical system
depending on parameters, A,

du
— = F(u, A
dt (U, )
is to augment the state variable u, by the parameters ), and adjoin

an approximate dynamical equation for the parameters

d\

atr =g(A).



Climatological Stochastic Model
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Climatological Stochastic Model
du(t) = [(—& +iw)u(t) + F(t)} dt + odW(t)

Nonlinear Extended Kalman Filter:

du(t) = [(—v(t) +iw)u(t) + F(t)—&—b(t)} dt + odW(t)
db(t) = (—7p+iwp)b(t)dt + opdWp(t)
dvy(t) = —d,(y(t) —A)dt + oy dW,(t)

We find stochastic parameters {7, wp, 0p, dy, 0} that are robust
for high filter skill beyond CSM and in many occasions comparable
to the perfect model.



Nature Signals for Unforced and Forced cases
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One mode demonstration of the filtered solution
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One mode demonstration of the filtered solution
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Turbulent system of externally forced barotropic Rossby wave

equation with instability through intermittent of negative
damping.

fluctuations of damping coefficient for modes 3-5

‘damping coefficient

255 260 265 270
time (in days)




Incorrectly specified forcings, observed only 15 observations
of 105 grid points

RMS Error
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Energy Spectrum
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