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What is filtering?
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1. Forecast (Prediction)
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2. Analysis (Correction)

The correction step is an application of Bayesian update

p(um+1|m+1) ≡ p(um+1|m|vm+1) ∼ p(um+1|m)p(vm+1|um+1|m)

Kalman filter formula produces the optimal unbiased posterior
mean and covariance by assuming linear model and Gaussian
observations and forecasts errors.



The standard Kalman filter algorithm for solving:

um+1 = Fum + f̄m + σm+1

vm = Gum + σo
m

Forecast (Prediction)

A) ūm+1|m = F ūm|m + f̄m,

B) Rm+1|m = FRm|mF ∗ + R,

Analysis (Correction)

D) ūm+1|m+1 = (I − Km+1G )ūm+1|m + Km+1vm+1

E) Rm+1|m+1 = (I − Km+1G )Rm+1|m,

F) Km+1 = Rm+1|mGT (GRm+1|mGT + Ro)−1.
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Example of application: predicting path of hurricane



Computational and Theoretical Issues:
I How to handle large system? Perhaps N = 106 state variables

(e.g., 200 km resolved Global Weather Model)

I Where is the computational burden? Propagating covariance
matrix of size N × N (6N minutes = 300,000 hours).

I Handling nonlinearity! Why not particle filter? Convergence
requires ensemble size that grows exponentially with respect to
the ensemble spread relative to observation errors rather than
to the state dimension per se(Bengtsson, Bickel, and Li 2008).

I Some successful strategies: Ensemble Kalman filters (ETKF
of Bishop et al. 2001, EAKF of Anderson 2001). Each
involves computing singular value decomposition (SVD).

I However, these accurate filters are not immune from
”catastrophic filter divergence” (diverge beyond machine
infinity) when observations are sparse, even when the true
signal is a dissipative system with ”absorbing ball property”.
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Filtering in Frequency space
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Filtering Stochastically forced advection-diffusion equation

∂u(x , t)

∂t
= − ∂

∂x
u(x , t) + F̄ (x , t)

+ µ
∂2

∂x2
u(x , t) + σ(x)Ẇ (t)

v(x̃j , tm) = u(x̃j , tm) + σo
m, x̃j = j h̃, (2N + 1)h̃ = 2π.

where σo
m ∼ N (0, ro).

In Fourier Domain, we reduce filtering (2N+1) dimensional
problem to filtering decoupled scalar stochastic Langevin
equations:

dûk(t) = [(−µk2 − ik)ûk(t) + F̂k(t)]dt + σkdWk(t)

v̂k,m = ûk,m + σ̂o
k,m

where σ̂o
k,m ∼ N (0, ro/(2N + 1)).
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How to deal with Sparse Regularly Spaced Observations?

ALIASING !!

0 1 2 3 4 5 6 7
!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1
m=25, l=3, k=2, N=5

sin(25x)
sin(3x)
sin(3xj)=sin(25xj)



Recall Aliasing Formula:

I Fine mesh: f (xj) =
∑

|k|≤N f̂fine(k)eikxj where xj = jh and
(2N + 1)h = 2π.

I Coarse mesh: f (x̃j) =
∑

|`|≤M f̂coarse(`)ei`x̃j where x̃j = j h̃ and

(2M + 1)h̃ = 2π.

I Suppose the coarse grid points x̃j coincide with the fine mesh
grid points xj at every P = (2N + 1)/(2M + 1) fine grid
points.

I Since eikx̃j = ei(`+q(2M+1))x̃j = ei`x̃j ,

I We deduce

f̂coarse(`) =
∑

kj∈A(`)

f̂fine(kj), |`| ≤ M,

where A(`) = {k : |k| ≤ N, k = ` + q(2M + 1), q ∈ Z}
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Consider the following sparse observations: 123 grid pts (61
modes) but only 41 observations (20 modes) available

sparse observations for P=3

Physical Space

Fourier Space

0 20-20 61-61

aliasing set !(1) = {1,-40,42} for P=3 and M=20

0 20-20 61-61

aliasing set !(11) = {11,-30,52} for P=3 and M=20



Aliasing Formula:
Observation at time tm becomes:

v̂`,m =
∑

kj∈A(`)

ûkj ,m + σ̂o
`,m,= G~̂u`,m + σ̂o

`,m

where G = [1, 1, . . . , 1] and σ̂o
`,m ∼ N (0, ro/(2M + 1)).

Reduced Filters

I With the aliasing formula above, we reduce filtering (2N + 1)
dimensional system with (2M + 1) observations, where
M < N, to decoupled P = (2N + 1)/(2M + 1) dimensional
problem with scalar observations (FDKF).

I When the energy spectrum of the system decays as a function
of wavenumbers, we can ignore the high wavenumbers (e.g.,
RFDKF, SDAF).
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Decorrelation time vs observation time:
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Ensemble Kalman Filter diverges with ensemble size
150 > N = 123. Extreme event,
∆t2 = 0.1,Ek = k−5/3,P = 3, ro = 2.05
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Reduced Filter produces high skill Spontaneous development of
extreme event for ∆t2 = 0.1 and Ek = k−5/3,P = 3, ro = 2.05
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Summary of Part I:

I In our assessment, we find that filtering sparsely observed
linear problem with ensemble Kalman filter with ensemble size
larger than the model dimensionality does not guaranteed
convergence solution.

I FDKF suggests that ignoring the cross covariance between
different aliasing sets is not only computationally
advantageous but it also produces more accurate solutions.

I Intuitively, this works because the reduced filter avoids the
spurious correlations between different wave numbers.
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Nonlinearity

Stochastically 
forced linear PDE

Uncoupled 
Langevin eqn

FT

Nonlinear Chaotic 
Dynamical 

Systems

Coupled nonlinear 
ODE through 

nonlinear terms

FT

Replace the Nonlinear terms
with an Ornstein-Uhlenbeck 

process

Radical Filtering Strategy for Nonlinear System



Filtering turbulent nonlinear dynamical systems

L-96 model (Lorenz 1996), 40-dim, “absorbing ball property”.

duj

dt
= (uj+1 − uj−2)uj−1 − uj + F , j = 0, . . . , J − 1

F λ1 N+ KS Tcorr

Weakly chaotic 6 1.02 12 5.547 8.23
Strongly chaotic 8 1.74 13 10.94 6.704
Fully turbulent 16 3.945 16 27.94 5.594
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The “poorman’s” Climatological Stochastic Model (CSM):

I Fourier coefficients of normalized L-96 [MAG05]:

dûk(t) = [(−dk + iωk)ûk(t) + E−1
p (F − ū)δk,0]dt + NL

I Replace the nonlinearity with Ornstein-Uhlenbeck process:

dûk(t) = [(−γk + iωk)ûk(t)+E−1
p (F − ū)δk,0]dt +σkdWk(t).

I Fit the damping coefficient γk and stochastic noise strength
σk to the equilibrium variance and correlation time.
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Equilibrium Variance and Correlation Time
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Regularly spaced sparse observations: weakly chaotic regime
F = 6,P = 2, ro = 1.96,∆t = 0.234 .

This is a regime where EAKF true is superior.

perfect model RMS corr.

EAKF true 0.82 0.95
ETKF true ∞ -
No Filter 2.8 -

model error RMS corr.

EAKF CSM 2.20 0.64
ETKF CSM 2.50 0.55
FDKF CSM 2.07 0.69



Regularly spaced sparse observations: weakly chaotic regime
F = 6,P = 2, ro = 1.96,∆t = 0.234
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Regularly spaced sparse observations: fully turbulent regime
F = 16,P = 2, ro = 0.81,∆t = 0.078.

This is a regime where FDKF is superior.

Scheme RMS corr.

EAKF true ∞ -
ETKF true ∞ -
No Filter 6.3 0

model error RMS corr.

EAKF CSM 5.15 0.61
ETKF CSM 5.80 0.54
FDKF CSM 4.80 0.66



Regularly spaced sparse observations: fully turbulent regime
F = 16,P = 2, ro = 0.81,∆t = 0.078
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Summary of Part II:

I We demonstrate that in the fully turbulent regime, perfect
model is not necessarily needed for filtering. In our example,
we encounter an ensemble collapse which yields filter
divergence beyond machine infinity.

I In the presence of model errors through CSM, our reduced
filtering strategy produces better solutions.

I Practically, our radical strategy is independent of tunable
parameters, SVD, and ensemble size.
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Online Model Error Estimation Strategy

The simplest contemporary strategy to cope with model errors for
filtering with an imperfect model nonlinear dynamical system
depending on parameters, λ,

du

dt
= F (u, λ)

is to augment the state variable u, by the parameters λ, and adjoin
an approximate dynamical equation for the parameters

dλ

dt
= g(λ).



Climatological Stochastic Model

du(t) =
[
(−γ̄ + iω)u(t) + F (t)

]
dt + σdW (t)

Nonlinear Extended Kalman Filter:

du(t) =
[
(−γ(t) + iω)u(t) + F (t)+b(t)

]
dt + σdW (t)

db(t) = (−γb + iωb)b(t)dt + σbdWb(t)

dγ(t) = −dγ(γ(t)− γ̂)dt + σγdWγ(t)

We find stochastic parameters {γb, ωb, σb, dγ , σγ} that are robust
for high filter skill beyond CSM and in many occasions comparable
to the perfect model.
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Nature Signals for Unforced and Forced cases
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One mode demonstration of the filtered solution
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One mode demonstration of the filtered solution
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Turbulent system of externally forced barotropic Rossby wave
equation with instability through intermittent of negative
damping.
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Incorrectly specified forcings, observed only 15 observations
of 105 grid points
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