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Abstract. In two recent papers ([GZ1] [GZ2]), we provided solutions to the

well-known unsolved problem of constructing sufficiency classes of functions

in H[R3]3 and V[R3]3, which would allow global, in time, strong solutions to

the three-dimensional Navier-Stokes equations. These equations describe the

time evolution of the fluid velocity and pressure of an incompressible viscous

homogeneous Newtonian fluid in terms of a given initial velocity and given

external body forces. In both previous papers, our solution was restricted to

functions defined on a bounded open domain of class C3 contained in R3. In

this paper, we study this problem for functions defined on all of R3. We prove

that, under appropriate conditions, there exists a positive constant a and a

number u+, depending only on the domain, the viscosity, the body forces and

the eigenvalues of the “Hermite” Stokes operator (defined below) such that,

for all functions in a dense set D contained in the closed ball B(R3) of radius

(1/2)u+ in H[R3]3, the Navier-Stokes equations have unique strong solutions

in C1
`
(0,∞), H[R3]3

´
.

Introduction

Let L2[R3]3 be the real Hilbert space of square integrable functions on R3

with values in R3, and let H0[R3]3 be the completion of the set of functions in
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u ∈ C∞0 [R3]3 | ∇ · u = 0

}
which vanish at infinity with respect to the inner prod-

uct of L2[R3]3, and let V0[R3]3 be the completion of the above functions which van-

ish at infinity with respect to the inner product of H1
0[R3], the functions in H0[R3]3

with weak derivatives in (L2[R3])3. The global in time classical Navier-Stokes

initial-value problem (on R3 and all T > 0) is to find functions u : [0, T ]×R3 → R3

and p : [0, T ]× R3 → R such that

∂tu + (u · ∇)u− ν∆u +∇p = f(t) in (0, T )× R3,

∇ · u = 0 in (0, T )× R3 (in the weak sense),

lim
‖x‖→∞

u(t,x) = 0 on (0, T )× R3,

u(0,x) = u0(x) in R3.

(1)

The equations describe the time evolution of the fluid velocity u(x, t) and the

pressure p of an incompressible viscous homogeneous Newtonian fluid with constant

viscosity coefficient ν in terms of a given initial velocity u0(x) and given external

body forces f(x, t). (Note that our third condition, lim
‖x‖→∞

u(t,x) = 0 on (0, T ) ×

R3, is natural in this case since it is well-known that Hk
0 [R3]3 = Hk[R3]3 (see Stein

[S] or [SY].)

Purpose

Let P be the (Leray) orthogonal projection of (L2[R3])3 onto H0[R3]3 and define

the Stokes operator by: Au =: −P∆u, for u ∈ D(A) ⊂ H2
0[R3]3, the domain of A.

Let Bu =: 1/2P(−∆+|x|2)u for u ∈ D(B). We call B the Hermite-Stokes operator.

The purpose of this paper is to prove that there exists a number u+, depending

only on A, B, f , ν and R3, such that, for all functions in D = D(A)∩B(R3), where
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B(R3) is the closed ball of radius u+ in H0(R3)3, the Navier-Stokes equations have

unique strong solutions in u ∈ L∞loc[[0,∞); V0(R3)3] ∩ C1[(0,∞); H0(R3)3.

Preliminaries

In terms of notation and convention, we follow Sell and You [SY]. In or-

der to simplify notation, we let H denote H0[R3]3 and V denote V0[R3]3. Our

use of the Fourier transform follows the definition of Rudin [RU]: F(h) =

1
[2π]3/2

∫
R3 eix·yh(y)dy, so that no factors of 2π appear in the transform pairs. In

order to simplify our proofs, we always assume that all functions u, v are in D(A)

and, as in [GZ2], we take c = max{ci}, where ci is one of the nine positive constants

that appear on pages 363-367 in [SY]. It will also be convenient to use the fact that

the norms of V and V−1 are equivalent in their respective graph norms relative to

H.

The Stokes Operator

It is known that A is a nonnegative linear operator which generates an analytic

contraction semigroup. It follows that the fractional powers A1/2 and A−1/2 are

well defined. Moreover, it is also known (cf., [SY], [T1]) that the norms
∥∥A1/2u

∥∥
H

and
∥∥A−1/2u

∥∥
H are equivalent to the corresponding norms induced by the Sobolev

space (H1[R3])3, so that:

(2) ‖u‖V ≡
∥∥∥A1/2u

∥∥∥
H

and ‖u‖V−1 ≡
∥∥∥A−1/2u

∥∥∥
H

.

In addition, A is an isomorphism from D(A) onto−−−→ D(A−1). Furthermore, the

embeddings V → H → V−1 are continuous, and it is easy to see that A−1 is the

projection of an operator represented by the Riesz potential, mapping D(A−1)
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onto D(A) (see Stein [S]). Applying the Leray projection to equation (1), with

C(u,u) = P(u · ∇)u, we can recast equation (1) in the standard form:

∂tu = −νAu−C(u,u) + Pf(t) in (0, T )× R3,

∇ · u = 0 in (0, T )× R3,

lim
‖x‖→∞

u(t,x) = 0 on (0, T )× R3,

u(0,x) = u0(x) in R3,

(3)

where we have used the fact that the orthogonal complement of H[R3] relative to

(L2)[R3])3 is {v : v = ∇q, q ∈ (H1[R3])3} to eliminate the pressure term (see

Galdi [GA] or [SY, T1, T2]). Theorem 1 below will be used to get our basic estimate

in Theorem 3. This result is a simple extension of the bounded domain case first

proved by Constantin and Foia̧s [CF].

Theorem 1. Let αi, 1 ≤ i ≤ 3, satisfy 0 ≤ α1 ≤ 3, 0 ≤ α2 ≤ 2, 0 ≤ α3 ≤ 3, with

α1 + α2 + α3 ≥ 3/2 and

(α1, α2, α3) /∈ {(3/2, 0, 0), (0, 3/2, 0), (0, 0, 3/2)} .

Then there is a positive constant c = c(αi) such that

|〈C(u,v),w〉H| 6 c
∥∥∥Aα1/2u

∥∥∥
H

∥∥∥A(1+α2)/2v
∥∥∥

H

∥∥∥Aα3/2w
∥∥∥

H
.

We shall make use of the following interpolation inequality: (see Sell and You

[SY], page 363)

‖Aγu‖H 6 c ‖Aαu‖θ
H

∥∥Aβu
∥∥(1−θ)

H

for all u ∈ D(Aα), where γ = θα + (1− θ)β, α, β, γ ∈ R, 0 ≤ θ ≤ 1 and β 6 α.
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The Hermite-Stokes Operator

The operator B̂ = 1/2(−∆ + |x|2) is the three-dimensional version of the stan-

dard harmonic oscillator operator, which generates the Hermite functions (products

of the Hermite polynomials by e−x2/2) as eigenfunctions for the eigenvalue problem

on R, ( see Hermite [HR], Appell and Kamé de Fériet [AK], and Magnus, Oberhet-

tinger and Soni [MOS]). It is easy to show directly, by separation of variables, that

the solution to the 3-dimensional problem is the product of the solutions to the

1-dimensional problem, while the eigenvalues for the 3-dimensional Hermite poly-

nomials are the sums of those for the 1-dimensional polynomials. Furthermore, B̂,

and hence B = PB̂, is positive with a compact inverse, while A has an unbounded

inverse on H0(R3)3. It turns out that B̂ is “natural” for R3 in the sense that it

is the only positive self-adjoint (sectorial) operator of lowest degree that is invari-

ant under both rotations and Fourier transformations. (This is actually true for

Rn, n ≥ 1.)

We will have need of the fact that every function h(t) ∈ H has an ex-

pansion in terms of the eigenfunctions of B so that, for example, B−β h(t) =∑∞
k=1 λ−β

k hk(t)ek(x) and, from here, it is easy to see that
∥∥B−β h(t)

∥∥
H ≤

λ−β
1 ‖ h(t)‖H, where λ−1

1 is the largest eigenvalue of B−1. We also need the follow-

ing result for our basic Theorem.

Lemma 2. D(A) = D(B).

Proof. If we define a norm on D(A) by ‖u‖A = ‖Au‖H, then (D(A) , ‖ · ‖A) is

a Hilbert space. Now note that the Fourier transform F(·) is an isometric iso-

morphism on (D(A) , ‖ · ‖A) to
(
D(P |x|2) , ‖ · ‖A

)
, since ‖Au‖H = ‖F(Au)‖H =
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∥∥∥

H
. It is now easy to see that D(A) = D(P |x|2). From this, it follows that

D(A) = D(B). �

It follows from the above lemma that (AB)−δ is bounded for δ > 0. The

following estimate is equation 61.24.1 on page 366 in Sell and You [SY]. If we set

α1 = 1, α2 = 1/2, and α3 = 0 in Theorem 1, along with the interpolation inequality,

we get that

|〈C(u,v),w〉H| 6 c
∥∥∥A1/2u

∥∥∥
H
‖Av‖H ‖w‖H .(4)

Theorem 3. Let u,v,w ∈ H, and let ε > 0 be arbitrary. Then, for δ = 1/4 + ε/2,

we have that:

∣∣∣〈(AB)−(1+δ)C(u,v),w
〉

H

∣∣∣ 6 cλ
−(1+δ)
1 ‖u‖H ‖v‖H ‖w‖H .(5)

Proof. Using the self-adjoint property of A, and integration by parts, we have

〈
A−βC(u,v),h

〉
H =

〈
C(u,v),A−βh

〉
H = −

〈
C(u,A−βh),v

〉
H .

It now follows from Theorem 1 that:

∣∣〈A−βC(u,v),h
〉

H

∣∣ 6 c
∥∥∥Aα1/2u

∥∥∥
H

∥∥∥A−β+(1+α2)/2h
∥∥∥

H

∥∥∥Aα3/2v
∥∥∥

H
.

If we set β = 1 + δ, α1 = α3 = 0, we have

∣∣∣〈A−(1+δ)C(u,v),h
〉

H

∣∣∣ 6 c ‖u‖H ‖v‖H

∥∥∥A(α2−1−2δ)/2h
∥∥∥

H
.

With δ = 1/4 + ε/2, we get that, for the last term to reduce to ‖h‖H, we can set

α2 = 3/2+ε. It follows that the conditions of Theorem 1 are satisfied if 3/2+ε < 2.

Thus, it suffices to assume that ε < 1/2, which we will do in the rest of the paper
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without comment. Our proof is completed by taking h = B−βw, and the fact that∥∥B−βw
∥∥

H ≤ λ−β
1 ‖w‖H. �

Example 4. If we use Theorem 1, with α1 = 5/4, α2 = 1/4, and α3 = 0, along

with the interpolation inequality, and the fact that
∥∥A1/2u

∥∥
H 6 ‖Au‖H we have

that, for all u,v ∈ D(A),

‖C(u,v)‖H 6 c
∥∥∥A1/2u

∥∥∥3/4

H
‖Au‖1/4

H

∥∥∥A1/2v
∥∥∥3/4

H
‖Av‖1/4

H

6 c ‖Au‖H ‖Av‖H .

(6)

A better estimate is possible, but for our use, equation (6) will suffice.

Definition 5. We say that the operator J(·, t) is (for each t)

(1) 0-Dissipative if 〈J(u, t),u〉H ≤ 0.

(2) Dissipative if 〈J(u, t)− J(v, t),u− v〉H ≤ 0.

(3) Strongly dissipative if there exists an α > 0 such that

〈J(u, t)− J(v, t),u− v〉H ≤ −α ‖u− v‖2H .

(4) Uniformly dissipative if there exists a strictly monotone increasing function

a(t) with a(0) = 0, limt→∞ a(t) = ∞, and:

〈J(u, t)− J(v, t),u− v〉H ≤ −a (‖u− v‖H) ‖u− v‖H .

Note that, if J(·, t) is a linear operator, definitions 1) and 2) coincide. Theorem

6 below is essentially due to Browder [B], see Zeidler [Z, Corollary 32.27, page 868

and Corollary 32.35, page 887 in, Vol. IIB], while Theorem 7 is from Miyadera [M,

p. 185, Theorem 6.20], and is a modification of the Crandall-Liggett Theorem [CL]

(see the appendix to the first section of [CL]) .
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Theorem 6. Let B[R3] be a closed, bounded, convex subset of H[R3]. If J(·, t) :

B[R3] → H[R3] is closed and strongly dissipative for each fixed t ≥ 0 then, for each

b ∈ B[R3], there is a u ∈ B[R3] with J(u, t) = b (e.g., the range, Ran[J(·, t)] ⊃

B[R3]).

Theorem 7. Let { A(t), t ∈ I = [0,∞)} be a family of operators defined on H[R3]

with domains D(A(t)) = D, independent of t. We assume that D = D ∩B[R3] is a

closed convex set (in an appropriate topology):

(1) The operator A(t) is the generator of a contraction semigroup for each

t ∈ I.

(2) The function A(t)u is continuous in both variables on I × D.

Then, for every u0 ∈ D, the problem ∂tu(t,x) = A(t)u(t,x), u(0,x) = u0(x), has

a unique solution u(t,x) ∈ C1(I; D).

M-Dissipative Conditions

Let us assume that f(t) ∈ L∞[[0,∞); H] and is Lipschitz continuous in t, with

‖f(t)− f(τ)‖H ≤ d |t− τ |θ , d > 0, 0 < θ < 1. With δ as in Theorem 3, we can

rewrite equation (3) in the form:

∂tu = ν(AB)1+δJ(u, t) in (0, T )× Ω,

J(u, t) = −B−(1+δ)A−δu− ν−1(AB)−(1+δ)C(u,u) + ν−1(AB)−(1+δ)Pf(t).

(7)

Approach

We begin with a study of the operator J(·, t), for fixed t, and seek conditions

depending on A,B, ν, and f(t) which guarantee that J(·, t) is m-dissipative for

each t. Clearly J(·, t) : D[(AB)(1+δ)] onto−−−→ D[(AB)(1+δ)] and, since ν(AB)(1+δ)
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is a closed positive (m-accretive) operator (so that −(AB)(1+δ) generates a linear

contraction semigroup), we expect that ν(AB)(1+δ)
J(·, t) will be m-dissipative for

each t.

Theorem 8. For t ∈ I = [0,∞) and, for each fixed u ∈ H, J(u, t) is Lipschitz

continuous, with ‖J(u, t)− J(u, τ)‖H ≤ d′ |t− τ |θ, where d′ = dν−1a−(1+δ), d is

the Lipschitz constant for the function f(t) and a−(1+δ) =
∥∥∥(AB)−(1+δ)

∥∥∥
H
.

Proof. For fixed u ∈ H,

‖J(u, t)− J(u, τ)‖H = ν−1
∥∥∥(AB)−(1+δ)[Pf(t)− Pf(τ)]

∥∥∥
H

≤ dν−1a−(1+δ) |t− τ |θ = d′ |t− τ |θ .

�

Main Results

Theorem 9. Let f = supt∈R+ ‖Pf(t)‖H < ∞, then there exists a positive constant

u+, depending only on f , A, B and ν such that, for all u with ‖u‖H ≤ u+, J(·, t)

is strongly dissipative.

Proof. The proof of our first assertion has two parts. First, we require that the

nonlinear operator J(·, t) be 0-dissipative, which gives us an upper bound u+ in

terms of the norm (e.g., ‖u‖H 6 u+ ). We then use this part, and the fact that

‖u‖H 6 ‖Au‖H, to show that J(·, t) is strongly dissipative on the closed ball,

B+ = {u ∈ H : ‖Au‖H 6 (1/2)u+}.
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Part 1) From equation (5), we consider the expression

〈
J(u, t), (AB)−δu

〉
H = −

〈
B−1(AB)−δu, (AB)−δu

〉
H

+ ν−1
〈
−(AB)−(1+δ)C(u,u) + (AB)−(1+δ)Pf(t), (AB)−δu

〉
H

= −
∥∥∥B−1/2(AB)−δu

∥∥∥2

H
− ν−1

〈
(AB)−(1+δ)C(u,u), (AB)−δu

〉
H

+ ν−1
〈
(AB)−(1+δ)Pf(t), (AB)−δu

〉
H

= −
∥∥∥B−1/2(AB)−δu

∥∥∥2

H
− ν−1

〈
C((AB)−(1+δ)u,u), (AB)−δu

〉
H

+ ν−1
〈
(AB)−(1+δ)Pf(t), (AB)−δu

〉
H

.

It follows that

〈
J(u, t), (AB)−δu

〉
H 6 −

∥∥∥B−1/2(AB)−δu
∥∥∥2

H
+ ν−1

∣∣∣〈C((AB)−(1+δ)u,u), (AB)−δu
〉

H

∣∣∣
+ ν−1a−(1+δ)f

∥∥(AB)−δu
∥∥

H

6 −
∥∥∥B−1/2(AB)−δu

∥∥∥2

H
+ ca−δ(νλ

(1+δ)
1 )−1 ‖u‖3H + ν−1a−(1+2δ)f ‖u‖H .

In the last line, we used our estimate from Theorem 3. We now choose the first

eigenvalue λn, n ≥ 1, and number ω such that

(1) λ
−1/2
n a−δ ‖u‖H 6

∥∥B−1/2(AB)−δu
∥∥

H 6 λ
−1/2
1 a−δ ‖u‖H ,

(2) λ
−ω/2
1 a−δ ‖u‖H 6

∥∥B−1/2(AB)−δu
∥∥

H 6 λ
−1/2
1 a−δ ‖u‖H ,

and let λ−1
0 = max{λ−1

n , λ−ω
1 }. It then follows that −λ−1

0 a−2δ ‖u‖2H >

−
∥∥B−1/2(AB)−δu

∥∥2

H. Thus, J(·, t) will be 0-dissipative if

−λ−1
0 a−2δ ‖u‖2H + ca−δ(νλ

(1+δ)
1 )−1 ‖u‖3H + (νa(1+2δ))−1f ‖u‖H 6 0,

so that

a−δ ‖u‖H

[
c(νλ

(1+δ)
1 )−1 ‖u‖2H − λ−1

0 a−δ ‖u‖H + (νa(1+δ))−1f
]

6 0.(8)

Since ‖u‖H > 0, we have that J(·, t) is 0-dissipative if

c(νλ
(1+δ)
1 )−1 ‖u‖2H − λ−1

0 a−δ ‖u‖H + (νa(1+δ))−1f 6 0.
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Solving, we get that

u± = νλ1+δ
1

2cλ0aδ

{
1±

√
1− (4cλ2

0f)
/

(ν2a(1−δ)λ
(1+δ)
1 )

}
= νλ1+δ

1
2cλ0aδ

{
1±

√
1− γ

}
,

where γ = (4cλ2
0f)

/
(ν2a(1−δ)λ

(1+δ)
1 ). Since we want real distinct solutions, we must

require that

γ = (4cλ2
0f)

/
(ν2a(1−δ)λ

(1+δ)
1 ) < 1 ⇒ ν2a(1−δ)λ

(1+δ)
1 > 4cλ2

0f

⇒ ν > 2λ0a
−(1−δ)/2λ

−(1+δ)/2
1 (cf)1/2.

It follows that, if Pf 6= 0, then u− < u+ , and our requirement that J is 0-dissipative

implies that, since our solution factors as (‖u‖H − u+)(‖u‖H − u−) ≤ 0, we must

have that:

‖u‖H − u+ ≤ 0, ‖u‖H − u− ≥ 0.

First observe that terms of the form (AB)−δu are dense. Then note that J(u, t)

is closed, and the dissipative nature of an operator is determined on a dense set.

It follows that, for u− ≤ ‖u‖H ≤ u+, 〈J(u, t),u〉H ≤ 0. (It is clear that, when

Pf(t) = 0,u− = 0, and u+ = ν(cλ0a
δ)−1λ

(1+δ)
1 .)
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Part 2): Now, for any u,v ∈ H with max( ‖Au‖H , ‖Av‖H) ≤ (1/2)u+, we have

that

〈
J(u, t)− J(v, t), (AB)−δ(u− v)

〉
H = −

∥∥∥B−1/2(AB)−δ(u− v)
∥∥∥2

H

− ν−1
〈
(AB)−(1+δ)[C(u,u− v) + C(v,u− v)], (AB)−δ(u− v)

〉
H

6 −λ−1
0 a−2δ ‖u− v‖2H + ca−δν−1λ

−(1+δ)
1 ‖u− v‖2H (‖u‖H + ‖v‖H)

≤ −λ−1
0 a−2δ ‖u− v‖2H + ca−δν−1λ

−(1+δ)
1 ‖u− v‖2H u+

= −λ−1
0 a−2δ ‖u− v‖2H + ca−δν−1λ

−(1+δ)
1 ‖u− v‖2H

(
1
2νλ

(1+δ)
1 (c−1a−δλ−1

0 )
{

1 +
√

1− γ
})

= − 1
2λ−1

0 a−2δ ‖u− v‖2H
{

1−
√

1− γ
}

= −α ‖u− v‖2H , α = 1
2λ−1

0 a−2δ
{

1−
√

1− γ
}

.

�

Theorem 10. The operator A(t) = νA(1+δ)J(·, t) is closed, uniformly dissipative

and jointly continuous in u and t. Furthermore, for each t ∈ R+ and β > 0,

Ran[I − βA(t)] ⊃ B[Ω], so that A(t) is m-dissipative on D.

Proof. Since J(·, t) is strongly dissipative and closed on B, it follows from Theorem

6 that Ran[J(·, t)] ⊃ B.

To show that A(t) = ν(AB)(1+δ)J(·, t) is uniformly dissipative for u,v ∈ B+,

we have

〈A(t)u−A(t)v, (u− v)〉H = −ν
∥∥∥A1/2(u− v)

∥∥∥2

H

−〈(1/2)[C(u− v,u) + C(u− v,v)], (u− v)〉H .
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Now, from equation (4),

|〈[C(u− v,u) + C(u− v,v)], (u− v)〉H|

6 c
∥∥∥A1/2(u− v)

∥∥∥
H
‖(u− v)‖H {‖Au‖H + ‖Av‖H} .

We now use −λ−1
0 a−δ ‖(u− v)‖H > −

∥∥A1/2(u− v)
∥∥

H, and the fact that the first

eigenvalue of B is 1/2, so that λ1+δ
1 < 1, to get:

〈A(t)u−A(t)v,u− v〉H 6 −ν
∥∥∥A1/2(u− v)

∥∥∥2

H
+ 1

2c
∥∥∥A1/2(u− v)

∥∥∥
H
‖(u− v)‖H {‖Au‖H + ‖Av‖H}

=
∥∥∥A1/2(u− v)

∥∥∥
H

{
−ν

∥∥∥A1/2(u− v)
∥∥∥

H
+ 1

2c ‖u− v‖H [‖Au‖H + ‖Av‖H]
}

6
∥∥∥A1/2(u− v)

∥∥∥
H
‖u− v‖H

{
−νλ−1

0 a−δ + cu+

}
6

∥∥∥A1/2(u− v)
∥∥∥

H
‖u− v‖H

{
−νλ−1

0 a−δ + 1
2νλ

(1+δ)
1 λ−1

0 a−δ
[
1 +

√
1− γ

]}
< 1

2νλ−1
0 a−δ

∥∥∥A1/2(u− v)
∥∥∥

H
‖u− v‖H

{
−1 +

√
1− γ

}
< 0.

If we set a (‖(u− v)‖H) = − 1
2νλ−1

0 a−δ
[
−1 +

√
1− γ

] ∥∥A1/2(u− v)
∥∥

H, we have

that:

〈A(t)u−A(t)v,u− v〉H 6 −a (‖(u− v)‖H) ‖(u− v)‖H .

It follows that A(t) is uniformly dissipative. Since −A(1+δ) is m-dissipative, for β >

0, Ran(I+β(AB)(1+δ)) = H. As J is strongly dissipative (in the ball of radius 1
2u+)

and closed, with Ran[J] ⊃ B, and J(·, t) : D onto−−−→ D, A(t) is maximal dissipative

(in the ball of radius 1
2u+), and also closed, so that Ran[I − βA(t)] ⊃ B. It follows

that A(t) is m-dissipative on B for each t ∈ R+ (since H is a Hilbert space). To see

that A(t)u is continuous in both variables, let un,u ∈ B + , ‖A(un − u)‖H → 0 ,
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with tn, t ∈ I and tn → t. Then (see equation (6))

‖A(tn)un −A(t)u‖H 6 ‖A(tn)u−A(t)u‖H + ‖A(tn)un −A(tn)u‖H

= ‖[Pf(tn)− Pf(t)]‖H + ‖νA(un − u) + [C(un − u,un) + C(u,un − u)]‖H

6 d |tn − t|θ + ν ‖A(un − u)‖H + ‖C(un − u,un) + C(u,un − u)‖H

6 d |tn − t|θ + ν ‖A(un − u)‖H + c ‖A(un − u)‖H {‖Aun‖H + ‖Au‖H}

6 d |tn − t|θ + ν ‖A(un − u)‖H + +2c ‖A(un − u)‖H u+.

It follows that A(t)u is continuous in both variables. �

Since B+ is the closure of D = D(A) ∩ B equipped with the restriction of the

graph norm of A induced on D(A), it follows that B+ is a closed, bounded, convex

set. We now have:

Theorem 11. For each T ∈ R+, t ∈ (0, T ) and u0 ∈ D ⊂ B, the global in time

Navier-Stokes initial-value problem in R3 :

∂tu + (u · ∇)u− ν∆u +∇p = f(t) in (0, T )× R3,

∇ · u = 0 in (0, T )× R3,

lim
‖x‖→∞

u(t,x) = 0 on (0, T )× R3,

u(0,x) = u0(x) in R3,

(9)

has a unique strong solution u(t,x), which is in L2
loc[[0,∞); H2] and in

L∞loc[[0,∞); V] ∩ C1[(0,∞); H].

Proof. Theorem 7 allows us to conclude that, when u0 ∈ D, the initial value problem

is solved and the solution u(t,x) is in C1[(0,∞); D]. Since D ⊂ H2, it follows that
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u(t,x) is also in V, for each t > 0. It is now clear that, for any T > 0,

∫ T

0

‖u(t,x)‖2H dt < ∞, and sup
0<t<T

‖u(t,x)‖2V < ∞.

This gives our conclusion. �

Discussion

It is known that, if u0 ∈ V, and f(t) is L∞[(0,∞), H] then there is a time T > 0

such that a weak solution with this data is uniquely determined on any subinterval

of [0, T ) (see Sell and You, page 396, [SY]). Thus, we also have that:

Corollary 12. For each t ∈ R+ and u0 ∈ D the Navier-Stokes initial-value problem

on R3 :

∂tu + (u · ∇)u− ν∆u +∇p = f(t) in (0, T )× R3,

∇ · u = 0 in (0, T )× R3,

lim
‖x‖→∞

u(t,x) = 0 on (0, T )× R3,

u(0,x) = u0(x) in R3.

(10)

has a unique weak solution u(t,x), which is in L2
loc[[0,∞); H2] and in

L∞loc[[0,∞); V] ∩ C1[(0,∞); H].

Since we require that our initial data be in H2, the conditions for the Leray-Hopf

weak solutions are not satisfied. However, it was an open question as to whether

these solutions developed singularities, even if u0 ∈ C∞0 (see Giga [G] and references

therein). The above Corollary shows that it suffices that u0(x) ∈ H2 to insure that

the solutions develop no singularities.
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