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* Motivation
» Introduction and explanation of the

STSA concept

» Traditional Approaches
* Practical Applications of the symbolic
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dynamics based Anomaly detection
* Gas turbine Simulation
- Hybrid electronic circuit

* Fatigue Test Apparatus for Damage Sensing
in Ductile Alloys

Conclusions and Summary
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"Anomaly is deviation from nominal

behavior”

Why early detection of Anomalies?
* Prevention of cascading catastrophic failures
» Enhancement of performance and availability

What do we work with?

* Modeling of complex dynamical systems solely
based on fundamental principles of physics is
often infeasible

» Data driven approach : Time Series data
generated from sensors



Physics of Anomalies

Two time scale approach
Anomaly Propagation : slow
System Response to inputs : fast

Collect bursts of data at fast sampling

Burst 1 Burst 2 Burst n
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Fin&graining
captures system dynamics

v

Coarse Graining
captures anomaly dynamics
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Multi-Time-Scale Nonlinear Dynamics
Slow Time Scale: Anomaly Propagation

Fast Time Scale: Process Response
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41 Finite State Machine
q Discretization of the Dynamical System in Space and Time
q Representation of Trajectories as Sequences of Symbols
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Why Wavelets?

* Preprocessing Times series data

necessary for extraction of pertinent
information

- Fourier analysis is sufficient if the

sighal to be analyzed is stationary and
if the time period is accurately known

* Wavelet analysis is needed for non-

stationary characteristics such as
drifts, abrupt asynchronous changes
and frequency trends



Signal(Dash—dot) Wavelet gaus17(Solid) Signal(Dash—dot) Wavelet db1(Solid)

2.5 T T T T T T T T T 2.5 T T T T T T T T T
L . £ ¢ L
2r h E i) K 2r
L9 LH H I i! o
A L i i
1.5F il At i RGO 2l 1.5 Fibo¢
H e il D e o i
TR R SR T Hiloo
T ! LAY - L c
N H A TR BT g o
— R T A i1y = !-_{!i :
- Iy 1 A .
D oosp it it D ook 1P
= I ; Al = i ! i
@© LT © L
= oL/ = op ] !
= i i e i
= i Lo . i & A
S —05Li .1 . i.1 .2 -05L; .1
P TERTTERY il < hlond
-- LN | T I L 1- - 1 L
T YA il Ling Tt T iy ! THH
TRt ul dni g B LT
Loy g N Lt AT
_ K 1 i’ 'R P! - _ ! i ;
B AT B T NI R N e
: T ] i L i y i
—2r3 L 7 S T 4 —2r7 L]
_2-5 1 1 1 | 1 1 1 | 1 _2-5 | 1
01 2 3 4 5 6 7 8 9 10 o 1 2
Time t

December 6, 2005



Pseudo-frequency of a wavelet

For every wavelet, there exists a certain frequency called

the center frequency £, that has the maximum modulus in the
Fourier transform of the wavelet .The pseudo-frequency

7,0f the wavelet at a particular scale a and sampling interval At is

f,=F./(a.At)

Wawvelet db4a
————— Center Freq Approx

enter Frequency Approximation

fal
A=

Wavelat dbd,
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Why is pseudo-ifrequency
important?

The wavelet coefficients of the signal
are significantly large when the
pseudo-frequency f, of the wavelet
corresponds to the locally dominant
frequencies in the underlying signal
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Choosing appropriate scales

Perform PSD ( Power Spectral Density)
analysis on the time series data to find
the frequencies of interest

Substitute the above frequencies in
place of 7,in the equation to obtain the

respec’rlve scale in ferms of the known
parameters
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Power Spectrum plots for Nominal and Anomalous Condition :
The Wavelet coefficients at scales corresponding to pseudo-
frequency of 0.54 Hz would be smaller in magnitude for
anomalous condition
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Once the wavelet and the scales are chosen, the
wavelet coefficients are evaluated for each scale.

The qmphs of wavelet coefficients versus scale,
at selected time shifts, are stacked starting with
the smallest value of scale and ending with its
largest value and then back from the largest value
to the smallest value of the scale at the next
instant of time shift.

* The arrangement of the resulting scale series data

in the wavelet space is similar to that of the time
series data in the phase space.

+ The wavelet space is partitioned intfo segments of
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coefficients on the ordinate separated by
horizontal lines



Uniform Partitioning
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« the maximum and minimum of the scale series

are evaluated. and the ordinates between the
maximum and minimum are divided into equal
sized regions.

* These regions are mutually disjoint and thus

form a partition.

* Each region is then labeled with one symbol

from the alphabet. If the data point lies in a
particular region, it is coded with the symbol
associated with that region.

* Thus, a sequence of symbols is created from a

given sequence of scale series data.



* regions with more information are
partitioned finer and those with
sparse information are partitioned
coarser

Wavelet Space Maximum Entropy Partitioning
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Maximum entropy is achieved by the
partition that induces uniform probability
distribution of the symbols in the alphabet

* N=length of scale series data
+ |Z|=size of the alphabet

* Sort the scale series data in ascending
order

» Every consecutive segment of length
intf(N/|Z|) is a distinct element of the
partition. (where Int(x)=is the greatest
intfeger less than or equal 1o x)

December 6, 2005



‘Entropy Rate based approach

*H(k) denotes the entropy of the symbol
sequence obtained by partitioning the data
with k symbols

1=k
H(k) = — Zp?:lOQQPi
1=1

- Entropy Rate is given by

k) = H(k) — H(k —1) Yk > 2
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[. Set & = 2. Choose a threshold €5, where 0 < ¢, << 1.
2. Sort the scale series data set (of length V') in the ascending
order.

3. Every consecutive segment of length |2 | in the sorted
data set (of length [V)forms a distinct element of the partition.
4. Convert the scale series sequence to a symbol sequence
with the partitions obtained in Step 3. If the data point lies
within or on the lower bound of a partition, 1t 1s coded with
the symbol associated with that partition.

5. Compute the symbol probabilities p;, 1—1 2,...k.

6. Compute the entropy H (k) = — ZE_ | pilogap; and the
entropy rate h(k) =H (k) — H(k—1)

7. If h(k) < €5, then exit; else increment £ by 1 and go to
Step 3.

December 6, 2005



1 [ [
D.B ........................................................................
-
@
= DB - - - A
o
= 5
o : Threshold & =0.2
"E 0.4 - - ‘L‘h __________________
T . /
0.2
0 : :
0 5 10 15

Number of Symbols

Selection of number of symbols from Entropy Rate

December 6, 2005



Roll rate(radians/sec)
[<B-} o o

o)

dians/se
o
o

Roll rate(ra
[<B-}

1. Time series data

December 6, 2005

Most

aggressive [ 1 M

2. Wavelet ‘rransfofm

Least

aggressive

Symbolic Dynamics Methodology

3. Partitioning

4. Generation of symbol
string 000001111010101......

— ‘ SEECE

\\ 606 ) T oot \— pE—
N v 1 0

1 0 ~( 00 o1 )
0 / P ‘ Ny
s A
I/~ L A )
(100 ) (o1 7 ML
e AW )
(r 7 o ‘

5. Construction of

Finite State
Machines



State to state transitions from a symbol sequence

v alphabet size = |A|LN
v window size = D O{G}UN
v kth word (state)= W* =wpwi'..w5

D-1 —1—i
v kth word value = W*=>"" "(w)A°™
Ky a K k
WoW, oo W5 _,
Kk k+1
Wo—— | wirtwit ... wkt | «—— Wp 4
in
Out Most least
significance
K+1, , K+1 k+1

v (k+1)th word = W™ = wy™w™ . .wy

Example

Poo 1-Poo O 0
0 0 Por  1-Pos
Po  1-pp O 0

-0 0 Py 1-py-
|A|=2; D=2; AP=4

v (k+1)th word value = W*?* = (W* —wfAP ) A+we?
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q Computationally efficient

q Fixed depth D and alphabet size A
Number of states N=AD

g Only the state transition probabilities to be determined
based on symbol strings derived from time series data
or wavelet-transformed data

q  States represented by an equivalence class of strings
whose D most recent symbols are identical
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Anomaly Detection Procedure

Problem can be split into two parts

(1)Forward Problem (Analysis): Anomalies apriori
known. Objective is to find their signature and
create a databank

(2)Inverse problem (Synthesis): Anomaly
classification. Objective is to match the
signatures with the processed real-time data
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Anomaly Detection Procedure

Forward (Analysis) Problem:
1. ~ Selection of an appropriate set of input stimuli.

2. Signal-noise separation, time interval selection, and
phase-space construction.

3. Choice of a phase space partitioning to generate symbol
alphabet and symbol sequences.

4. State Machine construction using generated symbol
sequence(s)

5. Selection of an appropriate metric for the anomaly
measure

6. Formulation and calibration of a relation between the
computed anomaly measure and known physical anomaly
under which the time-series data were collected at
different (slow-time) epochs.
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Anomaly Detection Procedure

Inverse ( Synthesis) Problem:

Excitation with known input stimuli selected in the
forward problem.

Generation of the stationary behavior as time-series data
for each input stimulus at different (slow-time) epochs.

Embedding the time-series data in the phase space
determined for the corresponding input stimuli in Step 2
of the forward problem.

Generation of the symbol sequence using the same phase-
space partition as in Step 3 of the Forward problem.

State Machine construction using the symbol sequence and
determining the anomaly measure.

Detection and identification of an anomaly (if any) based
on the computed anomaly measure and the relation derived
in Step 6 of the forward problem.
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Epsilon Machine [Santa Fe Institute]
v A priori unknown machine structure
v Optimal prediction of the symbol process
v Maximization of mutual information
(i.e., minimization of conditional entropy)

I[X;Y]=H[X] - H[X]|Y]

D-Markov Machine
v A priori known machine structure
(Fixed order fixed structure with given |A| and D)
v Suboptimal prediction of the symbol process
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summary of Anomaly Detection Procedure

Time Series Data .
Current, Voltage -
or other Signals S A

v

Sampling and
Quantization; - R
Denoising, and e . ]
Decimation

v

Wavelet
Transform
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. > 00011000110101...
Partitioning of
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»

D-Markov Machine
HMM Construction 1 0

»

Anomaly Measure
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Traditional Approaches



Traditional method 1: RBFNN

Neural networks (NN) provide a new suite of nonlinear
algorithms for feature extraction and classification.

A major class of NN model is the radial basis function
(RBF) heural network (NN)

the activation of a hidden unit is determined by the distance
between the input vector and the prototype vector

- essentially a nearest neighbor type of classifier
» The anomaly measure is defined as the distance function

M =d(frhom: fk)
Advantages:

» Unified approaches for feature extraction and classification

flexible procedures for finding good, moderately nonlinear
solution
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Traditional method 2: PGA

- The best known linear feature extractor is
the Principal Component Analysis (PCA)

* Makes use of Karhunen-Loéve expansion to
compute the mlargest eigenvectors of the
covariance matrix of the N g-dimensional
patterns.

* PCA uses the most expressive features
(eigenvectors with the largest eigenvalues) to
effectively approximate the data by a linear
subspace using the mean squared error
criterion.
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Practical Applications of the symbeolic
dynamics hased Anomaly detection

1. Gas turbine Simulation
2. Hybrid electronic circuit

3. Fatigue Test Apparatus for
Damage Sensing in Ductile
Alloys



Application 1: Gas Turbine Project

To identify slow time scale anomalies for
health management of aircraft gas turbine

For this purpose comparison study of
different pattern recognition algorithms

- More Traditional methods

* Principal Component Analysis (PCA)
Artificial Neural Network (ANN)
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Proposed Scheme 1: SFNN

- Finding the dimensionality of the phase space
of relevant system dynamics is difficult
especially if the time series data are noise-
corrupted

+ Kennel and Buhl have formulated a phase-space
partitioning method that is built upon the
concept of Symbolic False Nearest Neighbors
(SFNN)

* The partitions are defined with respect to a
set of radial-basis influence functions

* Major advantage: The partitioning is entirely
by the algorithm, based on the time series data
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Proposed Scheme 1: SFNN

The partitions are defined with respect to a

set of radial-basis influence functions,
ay

fi (X)=
% - 2 |19

Each associated with a symbol s, with the center z, and
weight a, . For each element "x" of the time series data sef,
one f, (x) is generally expected to be greater than other f (x)
with kZ=m. Then, the data point "x" in the phase space is
transformed to a symbol "s” in the symbol space. The
parameters z, and a, are the free optimization variables,
with the constraint a, = 0.
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Methodology

* GE XTE-46 Gas Turbine Engine model

» To identify anomalous condition : measure the
deviation of the efficiency values from
nominal state (brand new engine).

* To replicate hundreds of hours of engine
operation : accelerated testing approach

* The time series data used for analysis is the
combustor outlet temperature.
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- PCA
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Figure compares the four different methods of anomaly detection

RBFNN and PCA based methods are comparatively inferior to the
symbolic dynamics based methods in terms of early detection of
anomalies.
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Application 2: Electromechanical Systems

Externally Stimulated Duffing Equation
with a single slowly varying parametric anomaly

Governing Equations:

) Externally
dy(®. g + dy(), N+a v3(+ Applied Force
¢ 50+ 80D+ v+ v’ ot
= ACos(W 1) t Oftg, =) l
o4 o L y T
Random Initial Conditions I [y(®) ¥yl Mass
) T
t t [I1B5(0
[ ¥( O) ¥( O)] 5(_) \/Sc::;/l\::?lg J Nonlinear‘
tt fast timet Oto, Damping =B
s slow time 7777
Parameters:

a=1;9=0; A=22 w=50
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Anomaly Detection Apparatus for
Hybrid Electronic Gircuits
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Electromechanical Systems Lahoratory
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Sensitivity of the Detection Algorithm
to the Anomalous Parameter &
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Application 3 (a) : Anomaly Detection Apparatus for
Mechanical Vibration Systems
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Application 3 (b) : Fatigue Test Apparatus for
Damage Sensing in Ductile Alloys
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Fatigue Crack Damage Sensing
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Summary : Anomaly Detection
Symholic Time Series Analysis

Advantages

q Foundations on basic principles of physics and mathematics

q Quantitative measure as opposed to qualitative measure

q Robustness to measurement noise and spurious signal distortion
q Adaptability to low-resolution sensing

q Applicability to real-time anomaly detection

(Near-term) Disadvantages
g Need for much theoretical and experimental research

(especially in the area of optimal phase space partitioning)
q Seemingly counter-intuitive to inadequately trained technical personnel
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