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Reduced-rank decompositions



REDUCED-RANK DECOMPOSITIONS

e In many applications we are given an mxn (m > n) matrix A and
require a reduced-rank approximation:

A2 A=XTYT (%)

o X and Y1 are of full rank k.

o T is nonsingular of order k.

o If Ais mxn then it requires
o mmn words to store A

o mn adds and mults to form Az

e For the form (x) it requires
o (m + n + k)k words to store A
o (m+n+ k)k adds and mults to form Ax

2 Sparse A



SPARSE A

A2 A=XTYT (%)

<

o If A is sparse, then the counts become nnz —the number of nonzeros in

A.
o To be compared with (m + n + k)k for the approximation (*).

e If A has, say, £ elements per row, the approximation () looses when

k> /.

3 The Singular Value Decomposition



THE SINGULAR VALUE DECOMPOSITION

e We can write A in the form

A=UxV"!
o U= (uy -+ uy) is orthonormal.
oV =(vy -+ wv,) is orthogonal.

o ¥ = diag(oy,...,0,), where 0y > --- > 0, > 0.

e If we partition

w o (210 (T (B () 1 ()T | 77(k) (k) - (F)T
A= (U" Uy") o x® ) | ywr = U 2 Vi U 8 V.
2 2

We have the reduced-rank decomposition

A~ A, =Py ®T

e The error is |\2§k)||

4 Pros and Cons



PROS AND CONS

A= pPg®yeT

<

Pro: The approximation is optimal.

Pro: The SVD reliably determines numerical rank.

Pro: There are stable algorithms to compute (*) without computing the

entire SVD.

Con: The algorithms are expensive and their behavior depends on the

spectrum of the matrix.

Con: The factors Uj, and V), are not sparse.

The Pivoted QR Factorization



THE PIVOTED QR FACTORIZATION

e We can write AP in the form
AP =B = QR.
o () is mxn and orthonormal.
o R is nxn and upper triangular.

o P is a permutation matrix.

e If we partition

R%) pk)

k k k k

B= (8" BY) = QI ;>>< R E
22

where Rﬁ) is kxk, then

12

e The error is HRg;)H

6 Pros and Cons



PROS AND CONS

B=AP= Q" (R} RY).

<

Pro: The approximations are generally good.
Pro: The decomposition usually reveals rank.
Pro: The algorithms are fast.

Con: The factors ()}, and (Rﬁ) Rgg)) are not sparse.
o

In this talk we will show how to sparsify the QR approximation.

Relation to the SVD



RELATION TO THE SVD

o Let A= XY + E be a reduced-rank approximation to A. People worry
that X = R(X) will not be a good approximation to R(Ul(k)) from the
SVD.

e If Av = ou, then
sin Z(u, X) 1E1 (%)

o

o If o is well above the error level, its singular vector is well represented

in X .

e Proof: Let X, be a ON basis for X'|. Then sin Z(u, X) = || X {ul.

1. X{Av=0X{u
2. X{Av=X{(XY' - Ew=XXY" - X{FEv=-XFEv.

Hence || X {u|| < || E|

, which is equivalent to (x)

8 The Pivoted QR Decomposition: Some Important Facts



THE PIVOTED QR DECOMPOSITION: SOME IMPORTANT FACTS

B=AP=0QR

<

o ||5]l = ||bs]

o The norm of the jth columns of R and B are the same.

e R=Q'B
o We can compute the jth row of R from the jth column of () and B.

e Q=BR™!
o We can compute () from B and R.

9 The partitioned decomposition



THE PARTITIONED DECOMPOSITION

e Partition the decomposition in the form

Rk p®
k k k k
(BM BFy = @P @y [ 1 )

Our QR approximation is
~ k), k k
B =@ (Rgl) Rgz))

with error

1RSI

e This error estimate—if we can compute it—can be used to determine k.

10 Pivoting



PIVOTING

We will not compute the entire decomposition. Instead we will bring in
columns of A one at a time to compute successively

QY (RY RYY from QI V(REY RED)

The column to be brought in—the pivot column— corresponds the

(k—1)

largest column of Ry,

(k=1)

Again we need norm information about R,

Column Norms of Rg; b
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COLUMN NORMS OF R{:™Y

k—1 k—1
(B B

)= (VY QY

O

0, (

0

k—1 k—1
RED Rk >)

k—1
Ry "

Let r; and b, be the jth columns of R and B. Then ||r;|| = ||b;]|-

Partition

(9)

where 77"’ is a (k—1)-vector. Then

1,11 =

102 + [lrs”)12.

Hence we can downdate the norms according to the formula

751> =

1,11 —

711> =

1,11 —

""1

i

2

2
— Tg—1-

A Fly in the Ointment
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A FLY IN THE OINTMENT

Consider the problem of computing

7/2:52—,02

in IEEE double precision with rounding unit ey = 1071,

If 12/3% =107, then v* will have about 16 — ¢ significant figures.

o In particular, when t = 16, % has no significant figures.

If v/ < 1078, our norm computation fails.

For our applications, this is acceptable.

The Gram—Schmidt Algorithm



THE GRAM-SCHMIDT ALGORITHM

e Suppose we have a QR factorization B = (QR of B and wish to compute
a QR factorization

0 p
e We have
a = Qr+ pq
Hence
r=GQa
Since ||q|| = 1, we have

p=lla—Qr| and q=p '(a—Qr)

e The red equations are effectively an algorithm for extending our original
QR factorization.

14 Reorthogonalization



REORTHOGONALIZATION

e Cancellation in the formula ¢ = p~!(a — Qr) can cause loss of
orthogonality.

e [he cure is to orthogonalize twice.

r = Q’*a

qQ = a - Q*r
s = Q’*%q
r=r1r + s

qQ = q - Q*s
rho = norm(q)
q = q/rho

e Typically, q is orthogonal to () to working accuracy.
o Most people don't sweat the atypical stuff.

15 Computation of the QR approximation
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COMPUTATION OF THE QR APPROXIMATION

If we apply the GS algorithm to
k-1 k—1) (k=1
B = Qi VR
with a a column of A, we get

k k k
B - QIR

From the relation R = Q1 B, we can compute the kth row of Rgg) in the

form

ROk, k+1m) = QP ¢, &) BE(:, k+1:n).

o This is likely to be the most expensive part of the algorithm.

o Even if we don't want R9, we must perform this computation to
downdate norms.

The Quasi-Gram—-Schmidt Algorithm I



THE QUASI-GRAM-SCHMIDT ALGORITHM |

e If m is very large, we may be unable to store ().

o If we use the relation Q@ = BR~!, we can form the product
r = Q%a = R~TB"%a by the following algorithm.

d = B'xa
r = R’\d

e We can also compute g =a — Qr =a — BR™r by

R\r
a — Bxp

Qo
n

17 The Quasi-Gram—Schmidt Algorithm I1



THE QUASI-GRAM-SCHMIDT ALGORITHM I

e These considerations lead to the following code for the
quasi-Gram—-Schmidt algorithm.

d = B’*a r = Q’*a

r = R’\d

p = R\r q=a - Q*r
qQ = a - B¥p

d = B’xq s = Q’*%q
s = R’\d

r=r + s r=r+s

p = R\s q =9~ Q*s
qQ = q ~ Bxs

rho = norm(q) rho = norm(q)
q = gq/rho q = g/rho

e Applying this code to computing the QR approximation gives us a Q-less
approximation that we call the semi-QR approximation.

18 Numerical Properties |



NUMERICAL PROPERTIES |

e The Gram-Schmidt algorithm with reorthogonalization produces a ()
that is orthonormal to working accuracy.

e In the quasi-Gram-Schmidt the approximation BR~! may have columns
that are not orthonormal.

o This would be true even if we had the correctly rounded R.

e However, the loss of orthonormality is proportional to the condition
number ||R||||R~!|| of R, which is the best we can expect.

19 Numerical Properties 11



NUMERICAL PROPERTIES Il

e Let R+ E be the correctly rounded R from the semi-QR factorization of
B. Then
[E] < IR em.

e Set

~

Q=BR+E)'~Q-QFER".
Hence

Q'Q=Q'Q-Q'QER™ - RT'EQ'Q.

o Let W=Q'Q — 1T and w = ||IW|. Then
w0 Sw+2|QQIIRTE| < w+ 2yk(R)ew,
where x(R) = ||R||[|R™].

20 Review
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REVIEW

Our semi-QR approximation has the form

~ k k)—
B = (B{"RY (R RY)

The decomposition can be computed with pivoting with only sparse
matrix-vector multiplications and low order triangular solves.

If A has only —1, 0, or 1 for elements, then the matrix-vector
multiplication can be done with additions and subtractions only.

The columns of () are computed, used to compute a row R, and then
are discarded.

The stopping point for the algorithm can be determined by using the
value of HRg;)H

A Sparse Pivoted QR (SPQR) Approximation



A SPARSE PIVOTED QR (SPQR) APPROXIMATION
") Rty

11 f19
e Apply the quasi-GS algorithm to A to get a selection of columns of X of

A and a triangular matrix R.

e |f n is large we may not be able to store (R

o Let the error be €.

e Apply the quasi-GS algorithm to A' to get a selection of rows of Y'! of
A and a triangular matrix S.

o Let the error be €,y.

o If
T =R 'R ' (X'Ay)s 15 1.

then

|A— XTY?'|| < /€2, + €2 is minimal.

col

e Since the dimensions of 7" are small, XTY ! is essentially a sparse
approximation to A.

22 Some Timings



SOME TIMINGS

e A is a random sparse matrix of order 10,000 with singular values having
equally spaced common logarithms between 0 and —6.

e For £ = 10:5:40 we computed the SPQR approximation of rank k. This
was compared with the Matlab function svds(A,k). The results are
summarized in the following table.

k SPQR SVD
10 2.5 40.2
15 3.0 40.0
20 3.2 51.1
9% 3.6 55.7
30 4.1 702
35 4.5 92.7
40 4.8 120.0

e The SVD times are worse by factors ranging from 17 for kK = 10 to 31 for

k = 40.

23

Another Experiment
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ANOTHER EXPERIMENT

In the previous experiment, the singular values had no gap.
In another experiment the singular values were generated by

s = logspace(0, -4, n);
s(20:n) = 1e-6*s(20:n);

This places a multiplicative gap of about 10~% between the 19th and

20th singular values.

The results
nc SQR SVD
19 1.8 44
20 1.8 323.6
This illustrates the sensitivity of the SVD algorithm to the spectrum.

o For nc = 19, the algorithm must find a well separated eigenspace.

o For nc = 20, the eigenspace is ill-separated.

o But we still have to compute it!

Implementation



IMPLEMENTATION

e Michael Berry, Shakhina Pulatova, and | have implemented the SPQR
approximation in Matlab [TOMS 31 (2005) 252-269].

e A report and the code are available at
ftp://thales.cs.umd.edu/pub/reports/Contents.html

25 Implementation



