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Human Hemoglobin
(oxygen transport protein)

Globular proteins have dense, crystal-like packing density.
Proteins are small biomolecular “machines”  responsible

for carrying out many life processes.

(Structure by
G. FERMI and
M.F. PERUTZ)



Hemoglobin Protein Backbone 
(string of α−carbon units)

“ball of yarn”

One chain



4x4x4 Compact Lattice Loop

Possible cube dimensions: 2x2x2,4x4x4,6x6x6,…,LxLxL,…
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z )( 1−No. of distinct conformations: (Flory)

z = 6  in 3D



Hamiltonian Path Generation
(A. Borovinskiy, based on work by R. Ramakrishnan, J.F. Pekny, J.M. 

Caruthers)



14x14x14 Compact Lattice Loop



In this talk…

• knots and their relevance to physics

• “virtual”  tools to study knots

• knotting probability of compact lattice loops

• statistics of subchains in compact lattice 
loops

• knots in proteins



Knot – a closed curve in space that does not 
intersect itself.

The first few knots:

3-1 (Trefoil)

4-1 (Figure-8)

5-1 (Cinquefoil, Pentafoil

Solomon’s seal)
5-2

Trivial knot (Unknot)
0-1



Knots in Physics

•Lord Kelvin (1867): Atoms are knots (vortices) 
of some medium (ether).
•Knots appear in Quantum Field Theory and 
Statistical Physics.
•Knots in biomolecules. Example: The more 
complicated the knot in circular DNA the faster it 
moves in gel-electrophoresis experiments



A Little Knot Math



Reidemeister’s Theorem:
Two knots are equivalent if and only if
any diagram of one may be transformed

into the other via a sequence of
Reidemeister moves.

Reidemeister Moves



Compounded Reidemeister Moves



Knot Invariants -Mathematical signatures of a 
knot.

Trefoil knot

3-1

Trivial knot
0-1

Examples: ∆(-1)=1
v2=0
v3=0

∆(-1)=3
v2=1
v3=1

v3Vassiliev degree 3

v2Vassiliev degree 2

∆(-1)Alexander
SymbolName



Alexander Polynomial, ∆(t)
(first knot invariant/signature)

u1

u2 u3

g2

g3g1

start

Alexander matrix for this trefoil:

1t-10

-t1t-1

t-1-t1

∆(-1) = det
1-2

11 = 3Alexander invariant:



In the following
index k corresponds to kth underpass and

index i corresponds to the generator number
of the arc overpassing thekth underpass

For row k:
1) when i=k or i=k+1 then
���=-1, �����=1

2) when i equals neither k nor k+1:
If the crossing has sign -1:

���=1, �����=-t, ���=t-1
If the crossing has sign +1:
���=-t, �����=1, ���=t-1
3) All other elements are zero.

Recipe for Constructing Alexander Matrix, ���
n x n matrix where n is

the number of underpasses



Gauss Code and Gauss Diagram

Gauss Diagram for trefoil:

Gauss code for left-handed trefoil:
b - 1, a - 2, b - 3, a - 1, b - 2, a – 3

(Alternatively…)

sign:

1, (-)

2, (-)3, (-)

a – ‘above’
b – ‘below’



Vassiliev Invariants
(Diagram methods by M. Polyak and O. Viro)

Degree two (v2): Look for this pattern:

Degree three (v3): Look for these patterns:

+
2

1

e.g. trefoil

v2 =1
v3 =1



Prime and Composite Knots
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Method to Determine Type of Knot

Project 3D object
into 2D diagram.

Preprocess and simplify diagram
using Reidemeister moves.

Compute knot invariants.

Inflation/tightening
for large knots.

Give object a  knot-type 

based on its signatures.



A. Projection

Projected nodes and links

3D conformation 2D knot projection

projection process



B. Preprocessing
Using Reidemeister moves

537205712

1219389614

18796910

403838

41146

0204

…and after 
reduction

Average crossings 
before…

L



C. Knot Signature Computation

YES3275-2

YES5355-1

NO0-154-1

YES1133-1

NO001Trivial

Chiral?|v3|v2|∆(-1)|Knot



Caveat!
Knot invariants cannot unambiguously classify a 

knot.
However
• knot invariants of the trivial knot and the first four 

knots are distinct from those of other prime knots 
with 10 crossings or fewer (249 knots in all), with 
one exception (5-1 and 10-132):

• Reidemeister moves and knot inflation can 
considerably reduce the number of possibilities.



Knot Inflation

Monte Carlo



Knot Tightening

Shrink-On-No-Overlaps (SONO) method of Piotr Pieranski.
Scale all coordinates s<1, keep bead radius fixed.



Results



Knotting Probabilities for Compact Lattice 
Loops
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Subchain statistics



Fragments of trivial knots are more crumpled compared to 
fragments of all knots.

Sub-chain:
(fragment)

14x14x14 Compact Lattice Loop
Average size of subchain (mean-square end-to-end) versus 

length of subchain



Noncompact, Unrestricted Loop
Average gyration radius (squared) versus length

Trivial knots swell compared to all knots for noncompact chains.
This topologically-driven swelling is the same as that driven by
self-avoidance (Flory exponent 3/5 versus gaussian exponent 1/2).

(N. Moore)

Closed random walk
with fixed step length

5
3

NR≈
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Compact Lattice Loops
Ratios of average sub-chain sizes, trivial/all knots



Compact Lattice Loops

(A. Borovinskiy)

Over all knots: 2
1

tR ≈
i.e. Gaussian;
Flory’s result for chains in
a polymer melt.

Trivial knots: 3
1

tR ≈ ?

General scaling of subchains (mean-square end-to-end) versus length



Knot (De)Localization



Localized or delocalized?



What have been shown computationally…

*Katritch,Olson, Vologodskii, Dubochet, Stasiak (2000). 
Preferred size of ‘ core’  of trefoil knot is 7 segments.
**Orlandini, Stella, Vanderzande (2003). Localization to 
delocalization transition below a θ−point temperature.

Delocalized**?Compact 
(collapsed)

Localized**Localized*Noncompact
(swollen)

Flat knots

(Polymer on 
sticky surface)

Random 
circular chains



Knot Renormalization

g=1 g=2

Localized 
trefoil



Renormalization trajectory space



Renormalization trajectory
Initial state: Noncompact loop, N=384



Renormalization trajectory
Initial state: 8x8x8 compact lattice loop



Renormalization trajectory
Initial state: 12x12x12 compact lattice loop



Knots in Proteins



Previous work…

1. M.L. Mansfield (1994):
Approx. 400 proteins, with random bridging of 

terminals, using Alexander polynomial. Found at 
most 3 knots.

2. W.R. Taylor (2000)
3440 proteins, fixing the terminals and smoothing 

(shrinking) the segments in between. Found 6 
trefoils and 2 figure-eights.

3. K. Millet, A. Dobay, A. Stasiak (2005)
(Not about proteins) A study of linear random knots 

and their scaling behaviour.



1. Obtain protein structural information (.pdb files) 
from the Protein Data Bank. 4716 id’s of 
representative protein chains obtained from the 
Parallel Protein Information Analysis (PAPIA) 
system’s Representative Protein Chains from PDB 
(PDB-REPRDB).

2. Extract coordinates of protein backbone

3. Close the knot                                  (3 ways)

4. Calculate knot invariants/signatures

Steps



Protein gyration radius versus length

3
1

aNR =



CM-to-terminals distance versus gyration 
radius

RTC 5.1≈−



DIRECT closure method

T1, T2 – protein terminals



CM-AYG closure method

C – center of mass
S1, S2 - located on surface of sphere surrounding the protein

F- point at some large distance away from C



RANDOM2 closure method

(random)

(random)

Study statistics of knot closures after generating 1000 pairs 
of points S1 and S2. Determine the dominant knot-type.



Knot probabilities in RANDOM2 closures for 
protein 1ejg chain A

N=46



Knot probabilities in RANDOM2 closures for 
protein 1xd3 chain A

N=229



Knot counts in the three closure methods

•RANDOM2 and CM-AYG methods gave the 
same predictions for 4711 chains (out of 4716).
•RANDOM2 and DIRECT methods gave the same 
predictions for 4528 chains (out of 4716).



Distribution of the % of RANDOM2 closures 
giving the dominant knot-type



Unknotting probabilities versus length for 
proteins and for compact lattice loops

Total of 19 non-trivial knots in the RANDOM2 
method.
Knots in proteins occur much less often than in 
compact lattice loops.



Summary of Results

• Unknotting probability drops exponentially with 
chain length.

• For compact conformations, subchains of trivial 
knots are consistently smaller than subchains of 
non-trivial knots. For noncompact conformations, 
the opposite is observed. The fragments seem to be 
‘aware’  of the knottedness of the whole thing. 
(AYG)

• Knots in proteins are rare.

196
N

ePtrivial
−≈



Unresolved issues…

•Are knots in compact loops delocalized? To what 
degree?
•Theoretical treatment of the scaling of subchains
in compact loops with trivial knots.
•Theoretical prediction for the characteristic 
length of knotting N0. 0/

0 )( NNeNP −≈
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