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Its all a matter of shape

@ When asked how fo increase the milk production of cows, a
theoretical physicist might answer, after much head-scratching and
pages of calculations, "First, you start with a spherical cow.” A real
cow is too complicated. Scientists often resort to assumptions that
simplify a problem, making it solvable. But the downside is that the

solution may not represent anything “real.”

(paraphrased from http://archive.ncsa.uiuc.edu/Cyberia/NumRel/BuildingBlocks.html)

@ Example: Nearly all computations in magnetism involve the assumption
that everything behaves like a magnetic dipole. Even when the
particle shape is not spherical, the dipole approach continues to be
used. This is only appropriate if the particles are far apart!

@ In this talk, we will show that shape does matter, and that actual
shapes can be taken into account correctly, without assumptions.



Beyond the Spherical Cow ...
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Shape dependent quantities

@ demagnetization and depolarization ftensors
@ gravitational/electric field

@ capacitance

® moment-of-inertia tensor

@ solid angle

@ acoustic radiation impedance

@ various transport properties



Typical problems

@ Typically, these quantities require 3D integrations over
the volume of the object, or over the surface of the
object.

@ For infteracting objects, the integral is oftfen a 6D
integral over both particle volumes.

@ Shape usually enters through the integration
boundaries, via parameterized expressions for the
volume or the surface.

@ So, is there a way to incorporate the shape of the
object via a function, rather than via integration
boundaries?



The Shape Function

@ Each object has a binary nature, i.e., a randomly
chosen point is either inside the body, or it is noft.

@ Hence, we define the shape function as:

(- < %
1 1nside

D(r) = <\O outside

@ Note that this function is also known as the indicator
function or the characteristic function.

@ In a technical sense, this is not a real function, since
its derivatives do not exist in the traditional calculus
context. The shape function is therefore a generalized
function (distribution), i.e., a 3-D hat function.



The Shape Function

® The shape function can be used fo extend the
integration volume from the volume of an object to all
of space:

1, 2= [ 2

@ The advantages of using shape functions become more
apparent in Fourier space. The Fourier transform of
the shape function is known as the shape amplitude:

// —1k*rdr i ///'Elk*rdr
all apace JJJV

@ This is the only place where the actual shape
information is used as integration boundaries.



Example Shape Amplitudes

2
Sphere: D (k)= 4?;? 711(kR)
Cylinder: Dikps :ﬂﬁ sin(dk,)J1 (kL R)
gl Pl
1 2 k- I ¢

Facetted Objects: D(k) = ——

Ey
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e

Shape amplitude is a real
function for objects with a
center of symmetry.




Example Shape Amplitudes

tetrahedron rhombic dodecahedron



Magnetic Field and Energy of a dipole

Magnetic Induction: B(r) = Z_O 3ﬂ(ﬂ|° T;) — i
n r
= poH(r)

B(r) = V.X A(r)/ \

r | Permeability of vacuum Magnetic Field

Magnetic Vector Potential: A(r) = ZO “i TSI'
&\

Magnetostatic Energy:

B(r) = _p - B oA S )

o R r|°




Tensors Iin Magnetfism

E(I‘):% MT.BMQ 3(1‘.“13721‘%2) = pop1:D(r): po

Dipolar Tensor
DP () = - (r?6%F — 3rorP)

Amrd

Demagnetization tensor N describes
the demagnetization field due to a
given magnetization M.

B=pupM+H) — B;=pug(M; — N M)

Is there a relation between these two
tensors and the shape amplitude ?



Dipolar tensor in Fourier Space

1

Ard

DY (1) = (r26%F — 3rorP)
It is not too difficult to show
that the dipolar tensor is the

inverse Fourier transform of
kokb
kQ

hoq —
f

direction cosines of frequency vector

kokP
D (r ///dk B

Hint: use cylindrical coordinates to prove this relation; spherical
coordinates result in diverging integrals...




The Fourier Space Formalism

@ Consider an object with a given magnetization state M(r)

| & I'
Basic Equation: /M /‘3 dr’ "convolution”
pa i
Vector potential: A(k) —1Iu0 ]{;2 vector cross product
Fourier Transform i —ik-r Includes
of M(r): M ) s /1\/1(1.)e shape information

Magnetic Induction: B(k) :@X A(k)
B(k) = ~£01 x M(k) x k = i {M(k) & } — 4o [M(K) + HI(k)




Analytical Expressions

For a uniformly magnetized object: _

B = uy(M + H) s B® ="[1o(M% — N*SMP)

M D(k .
Demagnetization Field H(r) = ; /d3k 16(2 )k(. k)elkT

873

Demagnetization Tensor NP () — : dSk

k)ﬁlk r
(point function) 8’“'3

Demagnetization Tensor (N)*P(r) = 3 3V /dSk D(k)|”
7

(ballistic)

M3
Demagnetization Energy FE = s /dgk
1673 2



Demagnetization Tensor

o 1 kﬂkﬁ ik-r
N%(r) = Slﬂ_?/dgk o D(k)e'™

1 [FID*? (r)] F[D(r)]]

= D*’(r) ® D(r)

@ So, the demagnetization tensor is equal to the
convolution of the dipolar tensor with the shape
function, which is consistent with our intuitive
understanding: all the possible magnetic fields
are copied to each location in the object.

® The actual demag field is obtained by contracting
w.r.t. to the magnetic moment direction. H* = —N*%(r)M”



Properties of Demag Tensor

@ Irace:

o 1 D(k) - oo 1k-r 1 ik-r
Tr[NP] = 8?/di’)k % Y RO e ®’kD(k)e** = D(r)
O

@ Symmeiry: Being a second rank tensor, N inherits the
symmetry of the corresponding shape; in particular, if
the shape has a rotational axis of order greater than
2, then the fensor is isotropic in the plane normal to
that axis (Neumann principle)

@ Computability (numerical): Numerical computation is
relatively straightforward, thanks fto FFT algorithms,
BUT ..



Analytical vs. Numerical

@ In an analytical computation, the shape amplitude has
infinite support.

@ In a numerical FFT-based computation, the support is
finite (finite frequency range).

@ An inverse numerical FFT of an analytical shape
amplitude will give rise to Gibbs oscillations...

@ This can be avoided by using a filter function:

glk )= ’% 'sinc”(k) — sinc(2k)]
(2lr] + 1)(|r| = 1)° rl <1

elsewhere

g('}“) R i 0



Example
Rectangular prism with dimensions (2L,,2L,,2L,)

sin L ke BeE ieissin 1. i,

DKk)=V
(k) Iikgaw ik, - lab

Deviation from true
step function
extends to only 1
pixel on either side
of boundary.

Reqgular FFT Filtered FFT



Example (continued)

@ For numerical work, the demag tensor is given by:
- Logp .
> D(k)g([k])

N%(r) = FFT '

al.0
But: (NP = sq:%v / Ak kf D(k)|*> (Ballistic)

No filter function needed!
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Graphical Representation

A symmetric 3x3 matrix has 3 real eigenvalues
and associated eigenvectors.

Has eigenvectors

)\1 0 () as columns
Ny — O[0.)X 0 O/
0 0 2
Inside shape: A1,2,3 > 0 Ellipsoid
Single Sheet

Outside shape: X2 > 0;)3 <0
; £ ; & Hyperboloid



Demagnetization Tensor
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More examples
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More examples

a=2/3
.
M A3
¥
M A3
(b) a=3/32
_ [+)
1 v
(c) a=1/24
- -—w




Application to Electrostatics

@ A uniformly polarized particle has a potential:

Vir) = : /dr"P(r") AT

4meq r —r’|3

@ and a resulting field (in Fourier space):

E(l) ARk (k) — = L0 Dl

k
€0 k2

@ The electric displacement is then given by:

@ which results in: D, = P, + egl; = P, — i

SAME TENSOR !l



Depolarization Energetics

@ The self-energy of a uniformly polarized parficlé::
2 2
EE:—%/ P..E d°r = i /dSk‘D(k)‘ (p - k)
1%

kﬁ

1673 ¢q

SEM images of the faceted BaTiO; crystals after reaction with AgNO.

The white contrast specks indicate silver metal deposits. (images G. Rohrer)



Q

Octahedron

{111} Truncated
Cube




How about interacting shapes?

@ Magnetostatic energy is generally defined as:

U
E, = —5“ /V H(r) - M(r) d°r

@ Converting to Fourier space for uniformly
magnetized particles we find:

E, = / dB—k|1v1(1<)-1<;|2 = &3% / 4%k D, (k)Dj(k)(m; - k)(m; - k)exP.
1673 k2 Agr3

> 1
K= §ﬂ0ﬂ41M2

@ p=R; - R, is the relative position of the particles

@ This expression can be rewritten as:

E,, = 2K memSR {f;l [Dl (k)D} (k)i;:ﬂi%-ﬁ] } .



Interacting shapes

@ Using the convolution theorem, we find:
E,n(p;thy, thy) = 2K4m$ [C(p) @ D**(p)] m).

@ In this expression, we have introduced a new quantity:
C(r) = Di(r) ® Do(—r)

@ This is the cross-correlation of the shape functions.

@ Finally, we rewrite the energy in terms of a new
tensor field:

E,n(p; g, ng) = 2K Vi Vo mEN®B(pYmb = po p1:N (p): 1

1
ViVs

NP (p) = C(p) ® D*?(p)



The Magnetometric Tensor Field

Ep(p;y, my) = pig pi:N(p)ips

@ This relation is similar to that for pure dipoles:

E,,(p;my,my) = g p1:D(p):p2

@ The magnetometric tensor field contains all the
shape-dependent interactions, so that the
particles can be represented by their total
moments.



Geometrical Interprefation

D™(p-x)

C(x) D(p-x)

~




Example Computations

@ Rectangular prism (2a,2b,2¢c) auto-correlation function:

C(pzs pys p=) = (20 = |p2])(2b = [py])(2¢ — [p2])
@ N\agnefome’rric tensor element:

+1 +1 +1 T % B 2

[(F—)m S (Py ) +(p, — 2)2]2

=~ 3908 [4H Py Pys Pz) + H(Pz, —1 + py, =1 + p,) — 2H(py, Py, =L 492 )+
H (B, 14y, —1452)+H By =14y 1452) ~2H (B, Bys 145)+H (B 145y, 1+5-)
i QH(F_):IH —1isg Py 152) o QH()(_)SJS S Py: f_)Z)]

H(z,y, 2) =K1 hg, y,%) = 2K (@RS (= Lz

T

K(x,y,2) = =(r® — 32°) + zyz arctan (T

_y) = In (2 )
2r

(@)

r_um

: x Yoo 9 . Y
7 2 1 22)arcsinh + =(2° — x“)arcsinh )

Result is in full agreement with standard expressions used in micromagnetics codes.



Example Computations

@ Consider two bar magnets (rectangular prisms). The first magnet has dimensions
24 x 12 x 12 and is uniformly magnetized along the x-axis. The second magnet is
smaller (16 x 2 x 2) and is allowed to move in the x-y plane. Its magnetization is
along the longest axis. The question to be answered is then: for each location in
the x-y plane, what is the orientation of the second magnet for which the
intferaction energy is minimized?

@ 3D computation, using a 256 x 256 x 256 voxel grid, and the analytical expression
for the shape amplitude of a rectangular prism.
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Broader Interpretation

@ Magnetic particles interact through the dipolar
interaction, which is represented by the dipolar

tensor.

@ Perhaps it is possible to replace the dipolar tensor by
another interaction function to describe other
physical interactions between particles of arbitrary

shape...

, 1 :
N8(p) = 5-C(p) @ D*P(p)

Interaction “kernel”

N*(p) = C12C(p) ® D*(p)



Applications to Gravitation

@ Gravitational potential satisfies Poissons equation:
V2®(r) = 4nGp(r)

@ Solution for uniform mass density and arbitrary shape:

¢(r) = -G p(r') drise —Gp/ ‘fir;)f‘ dr’

2
@ Using the Fourier space approach this leads fto:
Gp D(k) .
P(r) = dk o
(r) 272 k2
@ and also, for the gravitational field:
1Gp k Jilr

@ Obviously, the same is valid for electrostatic problems...



What about gravitational interactions?

@ Interaction energy between two arbitrary bodies:

)=~ [f[ ar [f] ar B0

@ For uniform mass density we find:

E(r,r") = —Gp1p2 /// drD1 (r) /// dr’ s fpa\r )
Vi Vs L= T |
=g o ffaci
%
& Gppo // de$ D2

E(p) = —Gp1p2L(p) @

Ip\



General interactions

@ What we learn from this is that interactions between uniform bodies of arbitrary
shape can be written in terms of the shape cross-correlation function and an
interaction-dependent kernel, which, in Fourier space, takes on a form of the

type: 1

No for electrostatic, gravitational, ...

fo2

L.

kR for dipolar
J2
1 g "
for a Yukawa-type interaction
k2 — k2 r

question: Do all factors of this form correspond to physical interactions?

kkP kY i72

k[&

[?°2 {Tcxf[g(sa,ﬁ(squ’ 2. 5;’3'}!] at T,{’ﬁ[g&,ﬁ*}f&,{’ﬂa A1 (Y}fo:] (i Tq—r[g(sqﬂ(sqﬁ S 5(xi]} s B?Qc\f?qliﬂ?q’}-']



What about surfaces ?

@ Many physical quantities involve integrations over the
surface of the object. Could the shape function
formalism be used for such problems?

@ In other words, is there a “function” related to the
shape function that describes the surface?

@ preliminary work shows that the gradient of the
shape function results in the unit surface normal...



Surface Normal

VD(r)=F ' [FIVD{r)l]
. —]—‘ LiikD(K)]

=B ///dkkD(k — fig(r)

Explicit computation for a sphere results
in the outward unit normal on the surface.

The surface itself can then be described by Numerical work shows that this
the norm of this vector, which results in a is correct, but the theory needs
discontinuous “function” which vanishes to be done “properly”, using the
everywhere except on the surface where it theory of generalized functions
is unity... (distribution theory).

S(r) = /(- 0)(r) = [VD(r)|



Moment of Inertia Tensor
® MOIT is defined as: [, = / (?"253‘3* —xﬁ;mj) dV
V

@ example: [, = p/(ﬂ:?Z + y*)D(r) dr

(#* Ay ) i), r) = F = |[Flag+ y] @ Dik)]

l

—0(k2) [0(Kz)0" (Ky) + 0(ky)o (k)"

Working out the convolution products we find:

d:Di 02D
IEE = _f) s ¢ I 'S
ok2 " k2




MOIT (continued)

@ The full tensor is given by:

H,,(0) + H:(0) H,(0) H;(0)
Li=—p| ~HR(0)  HRO)+HR0)  HR(0)
H;.(0) H,.(0) H(0) + H,,(0)
82D (k)
B0 = ' ' in k=
z:,r( ) 9k, 3k‘j g Hessian matrix of D, evaluated in k=0

We can do the same thing for the quadrupole tensor: (Ji; = pE/ (3z;xz; — 720;;) dr
v




MOIT (continued)

@ There is a relation between the MOIT and the
quadrupole tensor:
Qij I;; D
- 2 = (26;; — 4)HE (0
4 = (26 ~ ) HE (0)
@ This relation is valid for every shape. This was
verified analytically for the sphere and numerically
for a number of basic shapes.




Additional General Relations

@ Consider the following relation:

el e iy
o3 f"’l ik-r
e T e T ///dk K

@ Integral converges for n=2, 3, and 4:

1
ﬂﬁ JEE 2 G:,B e G 84 ,B
g (r) == g 76 (5 — n)rer?|

o For n=4, we have: srr°s;” ~ELSID)

f

Integrand for MOIT !

| L3 .
o8 Sk /// dk Di(k)k : with D, (k) = /// drr"D(r)e © "
2 [/ ﬁ NE




Additional General Relations

@ Similarly for the quadrupole tensor:

e [[f i
= dk D*
Pe iR \kP

@ and an even more general relation:

///dk ( “1‘4 D|k(;‘)> kOkP = 7n2(46%% - 8)H

@ again, valid for all shapes...

af
D

(0)



Conclusions

@ Shape matters and can be correctly included in
analytical formalism without approximations!

@ The shape amplifude and its derivatives and moments
appear to allow for general shape-independent
statements or relations tfo be formulated.

@ Fourier space shape formalism is accurate, flexible, and
can be used for many other types of interactions...

o electrostatics, gravitation, moment of inertia tensor, elasticity, ..

@ Questions remain about the applicability of this formalism
for quantities that depend on surface integrations rather
than volume integrations. This research is currently
ongoing...






