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@ [. Problem formulation: phase diagrams

Phase diagrams are maps of the equilibrium phases associated
with various combinations of temperature and composition
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and ternary phase diagrams (PDs)
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PENNSTATE
I. Problem formulation: PD construction

Geometrically: common tangent construction

Miscibility gap
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Pictures courtesy of the Visual Analysis Lab, Virginia Tech
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¥ I. Problem formulation: Gibbs energy
minimization
Mathematically, equilibrium analysis of a K-component system with
n phases leads to the following minimization problem:

min (G = > f, G (¢ 1)

(.0

Z i =i

(=1

Z fi¢i" = fo¢g‘ Hle=1 = K
=1

fi is the number sites in phase i,
@ ik is volume fraction of k particles in phase i,
G, is the Gibbs energy of phase i.
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?I. Motivation: existing commercial software

¢+ Calphad-type iterative software

o Thermo-Calc (TCC, TCW, DICTRA)
Thermo-Calc Software £74 Thermo-Cale Software

o PANDAT (WinPhad, PanEngine)

CompuTherm LLC &) CompuTherm LLC
o ChemSage family (FactSage, ChemApp) (& CHEMSAGE
GTT Technologies
o MTDATA
National Physical Lab, UK pwél
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II. Motivation: existing software

r¥ Calphad-type iterative software drawbacks

X (user-dependent) Use of prior knowledge of the system to
generate a suitable starting point

X (unstable) Possible divergence or convergence to metastable

equilibria
Correct diagram Failure !

v Miscibility gap is specified Miscibility gap Is not specified
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* II. Motivation: Calphad drawbacks

hermocalc fails if the presence of a

bl anlisnot detected Optimization procedure diverges

or a bad choice of a starting poin

/

r)esign an algorithm capable of predictin#

system properties from initial data

Automation of phase diagram
calculation

March 22, 2005 NIST MCSD seminar 10



* 11 Motivation: PANDAT algorithm

S.-L. Chen et al, CALPHAD, 1993

Outline:

1) Subdivide the composition axis

2) Check stability, throw out points of higher energy
3) Check coplanarity condition on the remaining ones
4) Carry out optimization

March 22, 2005 NIST MCSD seminar



* 11 Motivation: PANDAT algorithm

S.-L. Chen et al, CALPHAD, 1993

Outline:

1) Subdivide the composition axis

2) Check stability, throw out points of higher energy
_~ 3) Check coplanarity condition for the remaining ones

4) Carry out optimization

Gs G; G
Tls T1l; T1j
T2s X245 X2
Tr1; Tl
o, T2

>0

for any of the compounds Az, ., Bas, .,
s=1,...,N,s #*1,].
March 22, 2005 NIST MCSD seminar

12



* 11 Motivation: PANDAT algorithm

S.-L. Chen et al, CALPHAD, 1993

r¥Better initial guess, BUT
LT a
A-Computational cost is too high: -ELH o u;? !
.-T.‘E; i ut-_ff:gf. |
Coplanarity checks alone reqguire al -&éi%ﬂ;- fe
o N-2 calculations of the determinant T N
e for a total of N(N-1)/2 pairs - - _____]'3

) O(N?) operations in binary case
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?I. Motivation: existing commercial software

¢+ Calphad-type iterative software

o Thermo-Calc (TCC, TCW, DICTRA)
Thermo-Calc Software user-dependence

o PANDAT (WinPhad, PanEngine)
CompuTherm LLC complexity issues

Can we improve the efficiency of the existing algorithms
without sacrificing the accuracy and generality of the method?
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¢ ITI. New algorithm: goals and ideas

Emelianenko M.G., Liu Z.K., Du Q., Computational
Materials Science, 2005

Goals:
/¥ Calculate equilibria in multicomponent multiphase systems

¢+  Minimize the number of trial points

/¥ Get comparable accuracy of solution with lower complexity
Ideas:

/¥ Rely on the geometrical properties of the Gibbs energies to find
better starting points

r¥ Use adaptive approach with effective sampling techniques

March 22, 2005 NIST MCSD seminar
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* I New algorithm: binary case

Preliminary axis transformation:
Ynew (X) = M(Y(X) = (Y (D) = ¥ (0))x = y,,,(0))

M
Curve having minimal value
at the right end
g_z_i - IncreaSIng Curvature Whlle
5 i preserving relative extrema
E original arrangement of the energy curves for the 3 phases E
'60| 0.2 0.4 _ 0.6 0.8 .;

March 22, 2005 NIST MCSD seminar 16



PENNSTATE

&

1. Fix /- the number of grid points in major axis subdivision

2. Identify stability regions

March 22, 2005
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* I New algorithm: binary case

1. Fix N—the number of grid points in major axis subdivision
2. Identify stability regions

3. Calculate starting points for optimization

| co L b:oundary of the stability region —
Adaptive search 1 | |
procedure is used to find e | adjusted starting points s
Jocal minima B :
\A
0 U.I1 0.‘2 U.IS 0.‘4 ;](If 0.‘8 U.I7 U.‘8 U.IQ ’;
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Function minima =AdaptiveSearch (a, b, phase,iter)

while (iter<=Niter)
(1) Sample n points on [a,b]

(2) For (iter==1) % finding concavity regions
(@) Calculate GPreR0(x) for x;, j=1,...,N

(b) Locate inflection points by finding indices, such that
gphase)oo (Xs) G’phase)oo (Xs +]) <0

(c) Identify interval(s) for refinement by counting inflection points.
If no inflection points found, put k=1, a(1) = a, b(1) =b,

If one inflection point found and GP"se0(x,)>0, put k=1, a(1) = a, b(1) =x,
If one inflection point found and GP"seM0(x,)<0, put k=1, a(1) =x,, b(1) =b,
If two inflection points found, put k=2, a(1)=a, b(1) =x_,, a(2)=x.,, b(2)=b,

(d) Perform recursive search on each of the identified intervals (a(),b())-
minima(j)=AdaptiveSearch(a(j),b(j), phase,2)
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o ITI. New algorithm: binary case

Schematic view of

the search for concavity regions
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1 concavity region
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/

2 concavity regions
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(contunued)

(3) For (iter>1) % recursive search procedure

(@) Calculate GPraseP(x)for x;, j=1,...,,N
(b) Find s = argmin G(Phase)o(x,) for x;, j=1,...,N
(c) If (GPasel (x )<e)or (iter>Niter) % met stopping criteria
X.=minima, return minima
else for o=(b-a)/2N do % recursive refinement
minima =AdaptiveSearch(x,-J,x,+9,phase,iter+1)
end if

End while

Function minima =AdaptiveSearch (a,b,phase,iter)

March 22, 2005 NIST MCSD seminar
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o ITI. New algorithm: binary case

Schematic view of the adaptive refinement

O) ==
£0
2
oco
IR
Q).C
O—= 0O
EOfU
o v
U)-I—J;_
2B v \
"":'Ea—) G"<0 Yy /
0 I
U X
._g'cE \ \
C-Iq_-)l b(1) x a(2) b(2)
SGE ol
/ LB

R Sample N points after each refinement
and locate lowest derivative value

March 22, 2005 NIST MCSD seminar 22



PENNSTATE

&

ITI. New algorithm: binary case

1. Fix V- the number of grid points in major axis subdivision
2. Identify stability regions

3. Calculate possible starting points for optimization

4. Perform coplanarity checks to get the convex hull of points
5. Carry out optimization for all remaining pairs of points

6. Check result for consistency

/. Construct phase diagram using solution obtained in step 6

March 22, 2005 NIST MCSD seminar
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IV. New algorithm: ternary case

Changes comparing to the binary case:

¥ Stability regions calculation is not cost effective, so resort to
adding sample points on the boundary

¥+ Better sampling techniques need to be used in the interior to
lower the complexity of finding critical points

Quasirandom sampling approach (via Halton, Hammersley or

Sobol sequencing) can be one possible alternative to the
uniform distribution.

March 22, 2005 NIST MCSD seminar
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IV. New algorithm: ternary case

sampling vs. uniform sampling

Sobo

Miscibility gap detection in the CaLiNa system
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IV. New algorithm: ternary case

1. Fix original domain as V={(Xx, c( x+y<1,x,y>0} N-the number of
grid points in major axis subdivision, ¢- tolerance, Niter -
maximum number of allowed refinements

2. For phase=1,...,Kdo
(@) minima = AdaptiveSearch2d(V,phase, 1)
CA (minima, phase)
(b) Sample NV points bdrypts on the boundary of domain I,
CA (bdrypts, phase)
end

. Perform coplanarity checks to get the convex hull of points in C

. Carry out optimization for all remaining pairs of points, check result
for consistency

5. Complete the phase diagram

S W

March 22, 2005 NIST MCSD seminar
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¢ IV. New algorithm: flow chart

Preprocessing module:
Database files 1. Identify if miscibility gap is present
2. Pick suitable initial point for minimization

N~

Generated TCM macro file

consists of Calphad options TCM file

and commands dependent on
a given dataset N~ _—
CALPHAD

March 22, 2005 NIST MCSD seminar
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®V. Computational complexity estimates:
binary case

h - the smallest mesh size to identify starting points with a given
accuracy &.
L— number/\?f levels for the adaptive scheme to reach this mesh

size ) h=1/\NV i.e. L = In(1/h)/In N
Chen et al method Proposed method
Yaouladls Ny = 1/h Ny =N +2(N-1)L =
subdivisions require
to reach mesh Cs]ize h O(In ]/ h)
Total complexity KNAO0.5NAN~1)¢ INK+3NC + 4NCL
estimated in terms (2+12(N-2))
of h
O( 1/°) O(In 1/A)
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®V. Computational complexity estimates:
binary case

=

Complexity comparison
(#operations vs. h)

O(1/f°) vs. O(In 1/h)
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v VI. Numerical examples

In the examples that follow we use the following form of the
Gibbs energy:

ZXOG‘D +RTZX In x

_I_XS GCD

EEE = Y X, X, ZL € )

j>i

The excess enerc_fy here is given in the form of the Redlich-
Kister polynomia

The reference phase diagrams are reproduced from

S. J. Zhang, D. W. Shin and Z. K. Liu, Thermodynamic

modeling of the Ca-Li-Na system, CALPHAD, Vol.27, 2003,
235-241.
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v VI. Numerical examples

Example 1: Binary Ca Na system

ThermoCalc result obtained The corresponding phase
using the a priori information diagram obtained automatically
1600 ' - ) LiNa PHASE DIAGRAM
1400 4 Liquid l 7
1200 - Liquid 1 + Liquid 2 B
X 1200
S 1000 - - A \
E bec(Ca) % 1000 - ,‘
2 800- - s |/ |
5 L = \
- 600 fce(Ca) i o i
400 - =
bec(Na)— 400
200 0 OIZ 0!4 016 Ol8 1.0
A Ca | Molle Fractic;n, Na | Na > woie FRACT'°3§?“ > 1
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G VI. Numerical examples
Example 2: Binary Li Na system

ThermoCalc result obtained The corresponding phase
using the a priori information diagram obtained automatically

LiNa PHASE DIAGRAM
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Temperature, K
TEMPERATURE, K

&

o

N
[=}
o

+—bcc(Li)
400 - A

350 bee(Na)—t
350
300 | : , ;
A 0 0.2 0.4 0.6 0.8 1.0 300 = - - - !
Li Mole Fraction, Na Na MOLE FRACTION, Na
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G VI. Numerical examples
Example 3: Binary Al Zn system

ThermoCalc result obtained
using the a priori information

1000 -

— 800 -
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TEMPERATURE, K

500 -

I I I I
4] 02 04 0.6 0.8
WEIGHT_FRACTION ZN

March 22, 2005

300 H
0

400§

AlZn PHASE DIAGRAM

The corresponding phase
diagram obtained automatically

1.0

NIST MCSD seminar

L L Il
0.2 0.4 0.6

WEIGHT FRACTION, Zn

i
08 1

33



PENNSTATE

G VI. Numerical examples
Example 4: Ternary Ca-Li-Na system at T=900K

Gibbs energy profile with the miscibility

gap and a corresponding common tangent
plane
A

M= fMola Fracticon, Li Li

The caloulated isethenmal ssction of the Ca-Li-Ma system at 900 K.

1]
] 0.1 02 0.3 0.4 05 06 o7 0.8 09 1
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= VII. Discussion and future work

Conclusions:

¥ The new algorithm possesses advantages over existing methods in
terms of the computational complexity and the robustness.

7+ It can be used to automate the calculation of phase equilibria in
complicated systems.

¥ Numerical results for binary and ternary systems show good
agreement of automatic calculations with prior results.

Future work:
1. Generalizations to higher dimensions
2. Analysis of other possible sampling strategies
3. Development of an independent software package

THANKS!
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