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* I know you what some math,
so I thought I should not make
you wait too long (and I decided to omit this). 

Disclaimer*

If you came to this seminar looking for answers, then 
you came to the wrong place.

If you came to this seminar looking for questions, then 
you came to the right place.
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Normalized flow from domain i to domain j

Cross-correlation between time-averaged flow vectors

Principle Component Analysis of cross-correlation

Compute the ith domain’s contribution to kth domain

Compute relative strength of flows to kth domain
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Seminar Overview

• What is emergence? 

• Where (possibly) does emergence arise?

• How (maybe) does emergence arise?

• How (perhaps) can we recognize emergence?

• Emergence by Design vs. Emergence by Nature

• Searching for Emergent Behavior in Large-scale Networks
– Flat 2-D homogeneous Cellular  Automata (CA) and 1/f noise
– Two-tiered homogeneous CA and wavelets

• Challenges of recognizing emergence in information systems

• Challenges in interpreting, exploiting, eliciting, and 
controlling emergence
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What is emergence?

• Operational view: System-wide behavior results – emerges – from 
interactions among individual elements, rather than from explicit 
behaviors incorporated into individual elements 
– For example, though each of the 1015 cells in a human embryo possess the 

same DNA, they differentiate (through gene activation and inhibition) into 
256 different cell types (e.g., blood, bone, muscle, and neural cells) that 
organize into the essential systems of the human body

– The specific role of each cell is not assigned, but rather emerges during 
embryo development

• Empir ical view: Systems self-organize into a complex state – poised 
between predictable cyclic behavior and unpredictable chaos – leading to a 
statistically predictable distribution of observed changes in system state
– For example, Earth’s tectonic plates exist in a complex state that leads to a 

distribution of earthquakes with a frequency inversely related to magnitude
– Such distributions have also been observed in a number of physical and social 

systems: variations in commodity prices, extinction rates in paleontology, 
global temperature over time, and frequency of cities by size

– Measured behaviors lead to a power-law distribution that signifies a system 
that has self-organized (or emerged) into a complex state
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Some traits (possibly) common to emergent systems*

• Autonomous action – individual elements act independently 
without benefit of a master control element

• Local information – elements act based on (physically or 
logically) local information without benefit of a global view

• Dynamic population – elements added and deleted naturally 
without system survival depending on individual elements

• Collective interaction – system behavior arises from 
interactions among many similar independent elements

• Adaptation – individual elements can adapt to changing 
goals, information, or environmental conditions

• Evolution – individual elements possess the ability to evolve 
their behavior over time

*K. N. Lodding, “Hitchhiker’s Guide to Biomorphic Software” , Queue, June 2004, pp. 66-75.
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Some (possible) examples of (operational) emergence

© http://www.nationalgeographic.com/

insect colonies

slime molds

© M.F. Schatz and J.L.Rogers 1998

Benard systems

©http://emergent.brynmawr.edu 2003

embryo development

economies

http://www.english.uiuc.edu/maps/depression/photoessay.htm

©http://www.waag.org/realtime/

cities
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Some (possible) examples of (empirical) emergence

http://www.ics.uci.edu/relations/develop/rs2001/teitelbaum/sld012.htm

information networks

highway traffic flows

http://www.wtopnews.com/

http://www.sover.net/~kenandeb/fire/hotshot.html

forest fires

avalanches

http://www.avalanche.org/

http://autoinfo.smartlink.net/quake/quake.htm

earthquakes

species evolution
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How (maybe) does emergence arise?

• Scale– requires critical mass in the number of system elements 
(order emerges from many interactions over space and time)

• Simplicity – requires that each element behave rather simply 
(difficult to construct elements to act on complete information)

• Locality – requires interaction among “neighbors”  
(limits speed of information dissemination)

• Randomness – requires chance interactions among elements 
(increases degree of information dissemination)

• Feedback – requires ability to sense environmental conditions 
(allows some estimation of global state) 

• Adaptation – requires that each element can vary its behavior
(allows system state to change with time)
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How (perhaps) can we recognize emergence?

fractal patterns

http://www.mbfractals.com/usergal/dougowen.html

self-similarity

http://www.physionet.org/tutorials/fmnc/node3.html

http://complexity.orcon.net.nz/powerlaw.html http://heseweb.nrl.navy.mil/gamma/solarflare/24mar00.htm

power laws1/f noise
© J. Davidsen and H.G. Shuster 2000
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Emergence by Design vs. Emergence by Nature

• By Design – some researchers view emergence as a property that 
is “designed”  into systems
– Inspires research into techniques to generate desired emergent behaviors

• By Nature– some researchers view emergence as an “ innate”  
property of natural systems
– Inspires research to discover and explain emergent behaviors

• Possible implications for  information systems
– Some researchers think we should investigate models (such as artificial 

life, cellular automata, swarms, biomorphic software, and intelligent 
agents) to generate emergent behavior in information systems

– Some researchers suspect that large-scale information systems inherently 
exhibit emergent properties
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Motivation for Our Work

• Urgency – growing dependence on large-scale information 
systems (e.g., Internet, Web, Grid) 

• Suspicion – that inherently exhibit emergent properties

• Fear – that we do not now understand at a macroscopic level

• Hope – that we can eventually understand, predict, and control 
macroscopic behavior in large-scale systems
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Our Research Agenda

• Do large-scale information systems (Internet, Web, Grid) 
inherently exhibit emergent behaviors?

– If so, are the behaviors desirable, undesirable, or mixed? 

– If so, can we explain, predict, and exploit the behaviors?

• Can we devise effective decentralized mechanisms to elicit 
desired emergent properties in large-scale information systems?
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Examples of Our Research

• Exploring implications of space and time in communications 
networks
– Using a flat homogeneous Cellular Automata (CA) and 1/f noise

• Investigating current understanding of Internet behavior
– Using a two-tiered homogeneous CA and wavelets

• Investigating techniques for spatial-temporal traffic analysis in 
the Internet (omitted from talk – but references provided)
– Using a three-tiered heterogeneous CA and principle components analysis 

of cross-correlation matrices
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Example #1 – Exploring Implications of Space and Time

• Goal – characterize correlation in congestion at different 
network sizes and time granularities of observation

• Method – collect and analyze data from simulation of a 
homogeneous 2-D CA model that can employ three different 
means of feedback control
– (1) open-loop (no control)

– (2) connection-admission control (CAC) and 

– (3) transmission-control protocol (TCP) flow control

• Analysis Methods – log-log plots of power spectral density vs. 
frequency (i.e., 1/f noise) from time-series of
– Node throughput

– System congestion state
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2-D Homogeneous CA Model of a Network
• Nodes– generate source packets (subject to flow 

restrictions), maintain unlimited length queue, forward
packets on to neighbors, consume packets if node is 
destination

• Generation process – each node has an on-off process:
– at each time step, generate a packet if on and congestion 

control permits
– do not generate packet if off or if congestion control 

forbids 
– duration of on and off periods exponentially distr ibuted

with means 

�

on and
�

off, respectively  

• Congestion control algor ithms (explained soon)
– Open Loop
– Connection admission control (CAC)
– TCP Flow Control

• Routing – next hop selected nearest neighbor (random 
selection when equidistant)

• System State
– Xout is number of packets received by a selected 

destination node during a time interval T
– Nr is the number of packets in router r

L x L gr id of 
interconnected nodes 

Each node interconnected 
to four  neighbors 
(boundary nodes 
interconnected as needed)
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Behavior of a Node in 2-D CA Model
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Alternate Congestion-Control Algorithms

• Open-Loop – send a packet at each time step when on

• CAC – source sends probe packet at beginning of each on period and 
destination returns probe reply from which source can compute a round-trip 
time normalized (Nrtt) by distance between source and destination
– If Nrtt < some threshold (Drtt), then send a data packet at each time step of on 

period; else send probe packet at next time step

• TCP – source sends data packets and destination sends acknowledgment 
packet for each data packet. Source computes Nrtt for each data-ack pair and 
uses Nrtt and Drtt in a TCP-like congestion control algorithm. For each ack
received the source does:
– If Nrtt > Drtt, set slow-start threshold to ½ congestion window; otherwise, if 

congestion window < slow-start threshold, then congestion window++

– If congestion window > slow-start threshold, then in congestion window = 
congestion window + 1/congestion window

– At each time step source generates a packet, but can only have as many packets in 
transmission as the congestion window allows
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Some Time-Series from 2-D CA Model Using TCP Congestion Control

Time series of queue length (Nr) at three 
time granularities T = 1, 10, and 100. 

Time series of Xout at three 
time granularities T = 40, 100, 
and 500.

The total time shown on these, and similar graphs, is equal to T x t, the sample 
interval size (T) multiplied by the number of sample intervals (t).

Unless otherwise indicated 

�

on = 100, 

�

off = 500, Drtt = 50
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Log-Log Plots of Power Spectra vs. Frequency for Xout

Presence of 1/f noise 
suggests evidence of 
collective effect

Self-similarity decays for same system size as T
increases

Self-similarity holds for same T as system size 
increases

Suggests that correlation in congestion increases with
system size

L = 8

NEXT WE MONITOR NETWORK-WIDE CONGESTION

L = 8 for T = 80 and 400

L = 32

L = 32 for T = 400 and 1000

L = 16

L = 16 for T = 200 and 600 HOMOGENEOUS MODEL EXHIBITS SIMILAR BEHAVIOR EVERYWHERE,
SO WE CAN SAMPLE ANY NODE AS REPRESENTATIVE OF ALL NODES
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Technique to Monitor Network-Wide Congestion

Time-series of number 
of congested nodes for 
various time 
granularities

• Define threshold Y such that if Nr > Y, node r
is congested (Y = 5 here)

• At any given time granularity T, count the 
number y of congested nodes

Red nodes are congested

Blue nodes are not 
congested
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Log-Log Plots of Power Spectra vs. Frequency for y

Self-similarity decays for same system size as T
increases

Self-similarity holds for same T as system size 
increases

Suggests that collective behavior in a large network 
holds more profound influence on congestion and 
predictability

L = 8 for T = 50 and 400

L = 16 for T = 200 and 
600

L = 32 for T = 400 and 1000

NEXT WE CONSIDER INFLUENCE OF NETWORK SIZE

Suggests that some 
time scale exists for a 
given network size 
where the most evident 
1/f noise (and collective 
effect) exists and 
where the network 
behavior will be most 
coherent
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Embedded Subsets of a Network vs. Network of Same Size 

Suggest that network sub-areas exhibit 
stronger
correlation in congestion when compared at 
the same time scale with a network of the 
same size as the sub-area

• Response in a network sub-area might have 
different characteristics than response in a 
network of the same size as the sub-area

Red nodes are 
congested

Blue nodes are not 
congested
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Example #2 –Investigating current understanding of Internet behavior

• Goal – improve current understanding of correlation structure of network 
traffic by identifying and studying fundamental causalities arising from 
multiple protocol layers operating in a sufficiently large network
– What is the role of user behavior?

– What is the role of transmission dynamics?

– What is the role of network structure?

• Method – collect and analyze data from simulation of a homogeneous two-
tiered (router tier and host tier) CA that represents different protocol layers
– (1) Application layer – on-off periods (exponential and heavy-tailed distributions) 

– (2) Transport layer – TCP flow control and TCP Friendly Rate Control 

– (3) Network layer –number of hosts per router and capacity of router links

• Analysis Methods – wavelet analysis of router throughput over ranges of 
timescales
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Analysis approach based on wavelets 
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Two-Tiered Homogeneous CA Model of a Network

• Sources– generate packets (subject to congestion 
control algorithms)

• Generation process – each source has on-off process:
– at beginning of each on period randomly select a receiver
– at each time step, generate a packet if permitted
– duration of on and off periods exponentially distr ibuted

(with means 

�

on and

�

off) or Pareto distributed with 
means .24 

�

on /1.2 and .24 
�

off /1.2

• Congestion control algor ithms (explained soon)
– TCP Flow Control
– TCP Friendly Rate Control (TFRC)

• Routers– maintain limited length queue (50 packets 
here) and forward packets on to neighbors
– next hop selected nearest neighbor to the left (so 

that packets between source-destination pairs are 
split among the two equidistant routes)

• Receivers– consume packets
• System State

– number of packets consumed and forwarded by a 
selected destination router during each time step

L x L gr id of routers
connected by links of
capacity nl packets per
time step

Equal number ns of 
sources attached to each 
router  with a var iable 
number  (< 2ns) of 
receivers attached to
each router
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Alternate Congestion-Control Mechanisms

• TCP – source sends data packets and expects destination to send 
ack for each data packet.
– If ack indicates missed data packet, set slow-start threshold to ½ 

congestion window

– If ack indicates no data packet missed:

• if congestion window < slow-start threshold, then congestion 
window++

• else congestion window = congestion window + 1/congestion window

– At each time step source generates a packet, but can only have as many 
packets in transmission as the congestion window allows

• TFRC – receiver computes packet loss rate and feeds that back 
to sender, which estimates round-trip time (RTT)
– Source inputs packet loss rate and estimated RTT into a TFRC throughput 

equation to learn when to transmit the next packet (i.e., what should be 
the interval between packet transmissions)
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Investigating Effects of Application Layer

Heavy-tailed distribution of file sizes (modeled as on
periods) leads to a pronounced autocorrelation in 
traffic over a range of about 11 octaves

Exponential distribution in file sizes leads to a more 
limited autocorrelation in traffic over a range of about 6 
octaves

These results are consistent with the results of others; 
thus, raising confidence in our model

Exponential λλλλon = 200, λλλλoff = 2000

TCP
Pareto “OFF”
Exponential “ON”

L = 3, ns = 10, nl = 5, TCP – note nl that determines granular ity of observation

TCP
λon = 200

TCP
Pareto “ON”
Exponential “OFF”
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Investigating Effects of Transport Layer
Heavy-tailed distribution of file sizes appears to give rise to long-range 
dependence regardless the transport mechanism used; however lowering the link 
capacity destroys
correlation structure for TFRC but not TCP L = 3, ns = 10, λλλλon = 200, λλλλoff = 2000

TCP
Pareto “OFF”
Exponential “ON”

TCP
Pareto “ON”
Exponential “OFF”

TFRC
Par et o “ ON”

TFRC
Exponent i al  
“ ON”

TFRC
Par et o “ ON”
nl = 2

TCP
Par et o “ ON”
nl = 2

nl = 2nl = 5 nl = 5
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TCP
ns = 10
nl = 2

TCP
ns = 10
nl = 20

TFRC
ns = 10
nl = 2

TFRC
ns = 10
nl = 20

Investigating Effects of Link Capacity

Restricting network capacity appears to strengthen correlation structure, while 
expanding network capacity appears to weaken correlation structure

L = 3, Exponential λλλλon = 200, λλλλoff = 2000

nl = 20

nl = 2
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TFRC
ns = 40
nl = 5

Investigating Effects of Traffic Demands

Independent of transport mechanism, increasing the traffic demand for a fixed 
network capacity increases correlation, while increasing network capacity for a 
fixed traffic demand weakens correlation L = 3, Exponential λλλλon = 200, λλλλoff = 2000

TCP
ns = 40
nl = 5

TFRC
ns = 40
nl = 20

ns = 40
nl = 5

TCP
ns = 40
nl = 20

ns = 40
nl = 20

TFRC
Exponent i al  
“ ON”

TCP
Pareto “OFF”
Exponential “ON”

ns = 10
nl = 5
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Investigating Effects of Network Size

Independent of transport mechanism, increasing network size increases 
correlation structure, given the same traffic demand and network capacity

ns = 10, nl = 1, Exponential λλλλon = 200, λλλλoff = 2000

TFRC
L = 3

TFRC
L = 9

TFRC
L = 27

TCP
L = 3

TCP
L = 9

TCP
L = 27

L = 3 L = 9 L = 27
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Challenges in Recognizing Emergence

• What data should be collected?

• How much data should be collected?

• At what time granularity should data be collected?

• How should collected data be analyzed?

• How can data be collected and analyzed in real-time throughout 
a large-scale network (which is not homogeneous)?
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Normalized flow from domain i to domain j

Cross-correlation between time-averaged flow vectors

Principle Component Analysis of cross-correlation

Compute the ith domain’s contribution to kth domain

Compute relative strength of flows to kth domain

ijijijij mxf σ/)( −=

)()())(( tftfC klijklij =

Cw = λλλλ
�
�
�
�
1)(

,

21 =�
ki

ikw

�=
L

i
ikk wS 21 )(

Normalized flow from domain i to domain j

Cross-correlation between time-averaged flow vectors

Principle Component Analysis of cross-correlation

Compute the ith domain’s contribution to kth domain

Compute relative strength of flows to kth domain

 

weight 
vector 

domain

time (secs.) 

T = 2.1s 
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Challenges in Interpreting, Exploiting, Eliciting, and Controlling 
Emergence

• Can evidence of emergent behavior be attributed to appropriate 
cause(s)?

• Can coherent behavior be recognized and acted upon in time to 
effect control?

• Can decentralized feedback and adaptation be applied effectively
to elicit a desired coherent state?

• Does a system that self-organizes to a “critical”  (coherent state) 
imply a substantial probability of exhibiting chaotic behavior?

• If so, then can a system operating at a critical state be prevented 
from exhibiting chaotic behavior?
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Conclusions

I wish we knew more about these questions because I suspect that
our large-scale information systems (e.g., Internet, Web, and 
Grid) will exhibit emergent properties long before we are able to 
understand what is happening and why, or to do anything about 
it.
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K. N. Lodding, “Hitchhiker’s Guide to Biomorphic Software” , QUEUE, June 
2004, pp. 66-76.
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J. Yuan and K. Mills, "Macroscopic Dynamics in Large-Scale Data Networks", chapter in 
upcoming book Complex Dynamics in Communication Networks, edited by Ljupco
Kocarev and Gábor Vattay, to be published by Springer, in press. 
http://w3.antd.nist.gov/~mills/papers/BookChapterYuanMills.pdf
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J. Yuan and K. Mills, “Monitoring the Macroscopic Effects of DDoSFlooding Attacks” , 
under review by the IEEE Transactions on Dependable and Secure Computing.
http://w3.antd.nist.gov/~mills/unpublished/ReformattedTDSC-0026-0204.pdf


