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Architectures for Fault-tolerant 

Quantum Computing 
 

In theory, quantum computers can efficiently simulate 

quantum physics, factor large numbers and estimate 

integrals, thus solving computational problems that are 

otherwise intractable.  In practice, quantum computers 

must operate with noisy devices called “gates” that 

tend to destroy the fragile quantum states needed for 

computation.  The goal of fault-tolerant quantum 

computing is to compute accurately even when gates 

have a high probability of error each time they are 

used. We are developing architectural concepts and 

error remediation strategies which will enable the 

development of practical quantum computing devices. 

 

Emanuel Knill  

 
 

Research in quantum computing is motivated by the 

great increase in computational power offered by 

quantum computers. There are a large and still growing 

number of experimental efforts whose ultimate goal is 

to demonstrate scalable quantum computing.  Scalable 

quantum computing requires that arbitrarily large 

computations can be efficiently implemented with little 

error in the output. 

One of the criteria necessary for scalable quantum 

computing is that the level of noise affecting the 

physical gates is sufficiently low.  The type of noise 

affecting the gates in a given implementation is called 

the error model.  A scheme for scalable quantum 

computing in the presence of noise is called a fault-

tolerant architecture.  In view of the low-noise 

criterion, studies of scalable quantum computing 

involve constructing fault-tolerant architectures and 

providing answers to questions such as the following:   

Q1: Is scalable quantum computing possible for 

error model E?   

Q2: Can fault-tolerant architecture A be used for 

scalable quantum computing with error model E?   

Q3: What resources are required to implement 

quantum computation C using fault-tolerant 

architecture A with error model E? 

To obtain broadly applicable results, fault-tolerant 

architectures are constructed for generic error models. 

In such cases, the error model is parameterized by an 

error probability per gate (or simply error per gate, 

EPG), where the errors are unbiased and independent.  

The fundamental theorem of scalable quantum 

computing is the threshold theorem which answers 

question Q1 as follows:   

If the EPG is smaller than a threshold, then 

scalable quantum computing is possible. 

Thresholds depend on additional assumptions on the 

error model and device capabilities.  Estimated 

thresholds vary from below 10-6 to 3 ä 10-3, with 10-4 

often quoted as the target EPG for experimental 

realizations of quantum computing. 

 
Figure 1.  The new NIST architecture for quantum computing relies 

on several levels of error checking to ensure the accuracy of 

quantum bits (qubits). The image above illustrates how qubits are 

grouped in blocks to form the levels. To implement the architecture 

with three levels, a series of operations is performed on 36 qubits 

(bottom row) each one representing a 1, a 0, or both at once. The 

operations on the nine sets of qubits produce two reliably accurate 

qubits (top row). The purple spheres represent qubits that are either 

used in error detection or in actual computations. The yellow spheres 

are qubits that are measured to detect or correct errors but are not 

used in final computations. 

Many experimental proposals for quantum computing 

claim to achieve EPGs below 10-4 in theory.  However, 

in the few cases where experiments with two quantum 

bits (qubits) have been performed, the EPGs currently 

achieved are much higher, 3 ä 10-2 or more in ion traps 

and liquid-state nuclear magnetic resonance (NMR) 

experiments, for example.   

In our work we have provided evidence that scalable 

quantum computing is possible at EPGs above 3 ä 10-2.  

While this is encouraging, the fault-tolerant 

architecture that achieves this is extremely impractical 

because of large resource requirements.   To reduce the 

resource requirements, lower EPGs are required.   

We have developed a fault-tolerant architecture, called 

the C4/C6 architecture that is well suited to EPGs 

between 10-4 and 10-2.  We have analyzed the resource 

requirements for this architecture and compared it to 

the state of the art in scalable quantum computing. 

The Architecture 

Fault-tolerant architectures realize low-error qubits and 

gates by encoding them with error-correcting codes. A 

standard technique for amplifying error reduction is 

concatenation.  Suppose we have a scheme that, 

starting with qubits and gates at one EPG, produces 

encoded qubits and gates that have a lower EPG.  
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Provided the error model for encoded gates is 

sufficiently well behaved, we can then apply the same 

scheme to the encoded qubits and gates to obtain a next 

level of encoded qubits and gates with much lower 

EPGs.  Thus, a concatenated fault-tolerant architecture 

involves a hierarchy of repeatedly encoded qubits and 

gates.  The hierarchy is described in terms of levels of 

encoding, with the physical qubits and gates being at 

level 0.  The top level is used for implementing 

quantum computations and its qubits and gates are 

referred to as being logical.  Typically, the EPGs 

decrease superexponentially with number of levels, 

provided that the physical EPG is below the threshold 

for the architecture in question. 

The C4/C6 architecture differs from previous ones in 

five significant ways.  First, we use the simplest 

possible error-detecting codes, thus avoiding the 

complexity of even the smallest error-correcting codes.  

Error correction is added naturally by concatenation.  

Second, error correction is performed in one step and 

combined with logical gates by means of error-

correcting teleportation.   This minimizes the number 

of gates contributing to errors before they are 

corrected.  Third, the fault-tolerant architecture is based 

on a minimal set of operations with only one unitary 

gate, the controlled-NOT.  Although this set does not 

suffice for universal quantum computing, it is possible 

to bootstrap other gates.  Fourth, verification of the 

needed ancillary states (logical Bell states) largely 

avoids the traditional syndrome-based schemes.  

Instead, we use hierarchical teleportations.  Fifth, the 

highest thresholds are obtained by introducing the 

model of postselected computing with its own 

thresholds, which may be higher than those for 

standard quantum computing.  Our fault tolerant 

implementation of postselected computing has the 

property that it can be used to prepare states sufficient 

for (standard) scalable quantum computing. 

The properties of the proposed architecture were 

determined with several months of calculations and 

simulations on large, conventional computer 

workstations.  Although the new architecture has yet to 

be validated by mathematical proofs or tested in the 

laboratory, it provides some evidence that scalable 

quantum computation may be closer to our reach that 

previously believed. 

 

Figure 2.  Errors for a CNOT gate implementation at levels 0, 1 and 

2. The errors are conditional on no faults having been detected. The 

error bars are 68% confidence intervals.  As can be seen, errors 

decrease rapidly with increasing level at EPGs of 3% or below. 

Extrapolation suggests that this behavior persists for even larger 

EPGs. At high EPGs, the “no fault” condition happens rarely. 

Nevertheless it is possible to complete a quantum computation with 

polynomial overhead by using many trials to prepare relatively 

error-free states that can then be used to implement error-corrected 

logical gates with high success probabilities. 

Summary 

We have given evidence that accurate quantum 

computing is possible with error probabilities above 

3% per gate, which is significantly higher than what 

was previously thought possible.  However, the 

resources required for computing at such high error 

probabilities are excessive. Fortunately, they decrease 

rapidly with decreasing error probabilities.  If we had 

quantum resources comparable to the considerable 

resources available in today's digital computers, we 

could implement non-trivial quantum computations at 

error probabilities as high as 1% per gate.   
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Quantum Logic Circuit Synthesis 
 
Design automation is an important technique for 

finding efficient classical circuits.  Given a Boolean 

function which the target circuit should implement, a 

synthesis program automatically determines a 

sequence of gates realizing this function.  Quantum 

logic synthesis aims to build a similar toolset for 

quantum circuits, seeking the fewest number of one and 

two-qubit processes to achieve a target quantum 

computation.  We have developed a technique of 

automatic quantum circuit synthesis for unstructured 

qubit evolutions improving a construction from the mid 

1990s by a factor of more than one hundred.  In 

addition, we have shown the new construction to be 

within a factor of two of optimal.  For multi-level 

quantum logics (qudits) similar advances have led to 

the first circuits ever with optimal asymptotics. 

 

Stephen S. Bullock 

 
 

 

While classical computers manipulate bits which carry 

values of 0 or 1, quantum computers manipulate 

quantum bits (qubits) which are state vectors of two-

level quantum systems.  If the quantum computer is not 

exchanging energy with the outside environment, these 

qubit state vectors are rotated during the computation.  

Typical quantum algorithms call for implementing 

such a rotation, mathematically a unitary matrix, and 

then observing the qubits.  Thus, while efficient 

Boolean circuits realize complicated functions on bits 

using a small number of logic gates, efficient quantum 

circuits break complicated unitary matrices into simple 

factors.  These factors (quantum gates) typically 

correspond to manipulating one or two quantum bits. 

The past two years have seen marked advances in the 

design of universal quantum logic circuits.  Such 

circuits implement any possible unitary evolution by 

appropriately tuning their gate parameters.  The new 

techniques are also overtly constructive.  Unitary 

matrices implementing nontrivial quantum 

computations are large, e.g. requiring 2
n
ä2

n matrices 

for n qubits.  The new quantum circuit synthesis 

algorithms rely on well-known matrix decomposition 

such as QR or the Cosine Sine Decomposition.  For ten 

qubits, commercial software on a 2.5GHz PC requires 

a few seconds for these factorizations. 

We illustrate basic quantum circuit design with an 

example.  Each circuit in the figure below applies the 

same two-qubit computation, namely multiplying the 

01 and 10 states by the complex number i while 

leaving 00 and 11 unchanged.  Each qubit is 

represented by a single line or rail in the circuit.  The 

boxes denoted S and H indicate single qubit operations, 

i.e. particular 2µ2 unitary matrices.  The gate spanning 

both qubits is a quantum controlled not, or CNOT.  

CNOT flips the target qubit (carrying the inverter) 

when the control qubit (black slug) carries 1, so that 

these down-target CNOTs exchange 10 and 11. 

S • • •
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=
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Figure 3.  Two quantum circuits for performing the same task. 

Although their target computation is the same, either 

diagram might be better suited to a given quantum 

computer implementation.  For example, if CNOTs are 

costly while one-qubit gates are implemented more 

easily, then the circuit at left is preferable.  Alternately, 

if one-qubit gates are expensive but CNOTs are cheap, 

then the circuit at right is preferable.  In practice, 

CNOTs tend to be more expensive than one-qubit 

rotations, and three-qubit gates tend to be more 

difficult to implement than CNOTs.  Further, while it is 

possible to build any unitary using exclusively one 

qubit gates and CNOT, simply employing one-qubit 

gates does not suffice.  Thus, the following discussion 

of universal quantum circuits focuses on minimizing 

CNOT counts. 

In fact, it is not obvious that CNOT and one-qubit gates 

suffice to build any unitary evolution.  This was settled 

in 1995 in a landmark paper of Barenco, Bennett, 

Cleve, DiVincenzo, Margolus, and Shor.  If n is the 

number of qubits on which the unitary operator acts, 

then these authors showed that 48n
3
4

n CNOTs suffice, 

in addition to many one-qubit gates.  Shortly thereafter, 

Knill argued that some multiple C4
n gates must be 

required for reasons of dimension.  The result has a 

parallel in classical circuits.  Namely, given a random 

bit-valued function on n bit strings, approximately 2n
/2 

strings will take on a value of 1.  Thus, we expect 2n
/2 

gates are required to distinguish for which bit strings 

the circuit should return a nonzero value. 

A Unitary-Universal n Qubit Circuit 

In summer of 2004, we discovered a new unitary-

universal n qubit quantum circuit requiring roughly 

(1/2)4
n CNOTs, an improvement by a factor of two 

over the best known circuit at the time and a factor of   

100n
3
 over the 1995 circuit.  Moreover, work from the 

summer of 2003 had sharpened Knill’s bound, actually 

valid for any two-qubit gate, to a specific bound of 

(1/4)4
n CNOTs.  Hence, the present circuit may never 

be improved by more than a factor of two. 
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The outline for deriving the circuit is as follows.  The 

key step is to use the Cosine-Sine Decomposition 

(CSD) for matrices.  The CSD splits any unitary matrix 

into three factors; the circuit elements outline in the 

box below represent the first and last.  The slash in the 

circuit represents a multi-line carrying an arbitrary 

number of qubits, meaning U may be any unitary 

matrix on any number of qubits.  Moreover, the circuit 

elements having the square box controls correspond to 

uniformly controlled rotations, a circuit block for 

which particularly CNOT-efficient circuits are known.  

Hence, the diagram employs the CSD to reduce 

construction of the n qubit U into four simpler n-1 

qubit unitaries V1, V2, V3, and V4. This allows for a 

recursive construction which terminates with hand-

optimized two-qubit circuits. 

 

Figure 5.  Basic quantum circuit synthesis decomposition. 

Circuits for Quantum Multi-Level Logics 

In addition, the efficiency of the circuit for quantum 

multi-level logics (qudits, d=level) has improved.  One 

may think of a qudit by way of analogy:  a qubit state is 

a quantum superposition of 0 and 1, a qudit state is a 

quantum superposition of 0, 1, … d-1.  Knill’s lower 

bound also stated that Cd
n-2 two-qudit gates were 

required for any generic dn
µd

n unitary U.  Yet the best 

known constructive procedure required Cn
2
d

2n
 gates.  

In fall of 2004, we produced a new Cd
2n construction, 

closing this gap.  The circuit exploits a variant of the 

QR matrix decomposition.  The original asymptotically 

optimal qubit circuits, due to researchers at the 

University of Helsinki, also leaned on a QR technique 

and a Gray code cancellation.  Rather than generalize 

the Gray code cancellation to base d numbers, the new 

circuit relies on a recursively generated tree.  This tree 

describes which entries of the unitary matrix to 

construct with quantum gate elements at which time.  

A sample tree, for 3 qutrits (i.e., d=3, n=3) is shown 

above. 

Lessons Learned 

These specialized techniques for generic unitary 

matrices might help in optimizing other quantum 

circuits. 

• Just as Boolean factorizations are important for 

classical circuit design, so too are matrix 

decompositions useful in quantum circuit design. 

• It is possible to exploit parallels to classical logic 

synthesis.  For example, one may view the side 

factors of the CSD as multiplexers, applying an n-1 

qubit unitary matrix dependent on the most 

significant qubit. 

• Novel aspects of quantum circuits must be explored 

thoroughly.  For example, at the heart of the qudit 

circuit is a subcircuit capable of solving the hard 

problem of initializing a generic quantum memory 

state.  In contrast, the classical problem of 

initialization trivially requires at most n bit flips. 
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Figure 4.  Recursively generated tree for automated quantum circuit synthesis for three qutrits. 
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Adaptive Finite Element 

Modeling of Two Confined and 

Interacting Atoms 
 

High order finite element methods using adaptive 

refinement and multigrid techniques have been shown 

to be very efficient for solving partial differential 

equations on sequential computers. We have developed 

a code, PHAML, to extend these methods to parallel 

computers.  We have applied this code to solve a two-

dimensional Schrödinger equation in order to study the 

feasibility of a quantum computer based on extremely 

cold neutral alkali-metal atoms. Qubits are 

implemented as motional states of an atom trapped in a 

single well of an optical lattice.  Quantum gates are 

constructed by bringing two atoms together in a single 

well leaving the interaction between them to cause 

entanglement.  Quantifying the entanglement reduces 

to solving for selected eigenfunctions of a Schrödinger 

equation that contains a Laplacian, a trapping 

potential, and a short-range interaction potential. 
 

William Mitchell 

 
 

The idea of using the rules of quantum mechanics as a 

paradigm for computing has engendered a flurry of 

research over the last ten years.  Strange quantum 

properties, such as entanglement, may yield a 

significant advantage, providing novel mechanisms for 

the solution of problems that are intractable on 

classical computers. Advances in diverse fields of 

physics have led to proposals for various alternate 

physical realizations of a quantum bit and related 

quantum gates, the quantum analog of one- and two-bit 

computer operations.  We are interested in modeling a 

quantum gate with quantum bits that are based on ultra-

cold atoms.  Ultra-cold atoms can be confined by 

counter-propagating laser beams. The light creates a 

three-dimensional washboard potential or optical 

lattice. A single atom is held in each potential 

minimum or lattice site of the washboard.  Two energy 

levels of an atom are associated with the “0” and “1” 

states of a quantum bit.  By bringing two isolated 

atoms from separate sites together and having them 

interact, a two-quantum-bit operation can be realized. 

First-principle modeling of the interactions of two 

atoms in a lattice site is numerically challenging, as 

length scales for the lattice and the mutual atom-atom 

interaction differ by orders of magnitude. Our work has 

applied advanced finite element techniques, including 

high order elements, adaptive grid refinement, 

multigrid solution methods, and parallel computing, to 

the solution of the Schrödinger equation that models 

this interaction. 

For appropriately chosen laser intensities and 

geometries the lattice sites are approximately harmonic 

and cylindrically symmetric.  This leads to a model for 

the relative motion of two atoms in a single site by a 

two-dimensional Schrödinger equation in cylindrical 

coordinates, i.e., an elliptic eigenvalue problem.  The 

potential function in the Schrödinger equation consists 

of a short-ranged atom-atom interaction potential, 

modeled by a Lennard-Jones potential, and a trapping 

potential that describes the optical well. 

 

 

 
Figure 6.  Contour map of the computed wave function for the first 

trapping state of a model of interacting Cesium atoms. The large 

difference in scales between different parts of the wave function is 

illustrated by two levels of zooming. 

 

The interest lies in obtaining a small number of wave 

functions whose eigenvalues are closest to zero.  These 

are called the trap states because they are eigenstates in 

which the eigenfunction extends from short to large 

atomic separations and in which the trapping potential 

plays an important role.  Fig. 6 illustrates the nature of 
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the wave function for the first trapping state of a model 

of Cesium atoms. 

The large difference between the scales of the wave 

due to the trapping potential, the large red wave in Fig. 

6, and the waves due to the interaction potential, the 

small waves, which are evident through two levels of 

zooming the image, mandate the use of adaptive grid 

techniques. An adaptive grid technique begins with a 

very coarse grid, and then selectively refines elements 

by computing an error estimate for each element and 

refining those with large estimates.  The process is 

repeated until a sufficiently accurate solution can be 

computed. The grid used for the solution shown in Fig. 

6 consisted of approximately three million elements.  

The elements are extremely small in the area where the 

solution varies rapidly, and large in the outer regions 

where the solution varies slowly.  Such an element 

distribution can lead to optimal utilization of resources 

during the solution process.  If a uniform grid with 

elements the size of the smallest elements was used, for 

example, it would require on the order of 1017 

elements, clearly showing the need for non-uniform 

grids for this problem. 

Additional improvements in the solution have recently 

been made through the application of high order 

elements.  Linear elements represent the solution as a 

piecewise smooth function that is linear over each 

triangle of the grid.  High order elements use a higher 

degree polynomial on each triangle.  Using a pth degree 

polynomial, the error of the approximation decreases 

like h 
p+1 where h is the diameter of the element.  Thus 

high order elements give an accurate solution with 

many fewer grid elements than in the linear case.  For 

another Cesium model, a` solution with 3 accurate 

digits via linear elements required approximately 4.5 

million degrees of freedom.  The solution took 35 

minutes on a 32-processor parallel computer.  Using 

cubic elements, the same accuracy is obtained with 0.5 

million degrees of freedom in 8 minutes on a laptop 

computer. However, we require much higher accuracy 

for realistic models.  Using 5th degree elements and 

resources comparable to the linear case, we have 

obtained solutions accurate to 8 digits. 

Further improvements in the solution techniques will 

be made through our on-going research in the use of 

hp-adaptivity.  In this approach, adaptive refinement is 

applied not only to the size of elements (h), but also to 

the polynomial degree over each element (p).  The 

appeal of hp-adaptivity is that the error of the 

approximation can decrease exponentially in the 

number of degrees of freedom, whereas with fixed 

degree polynomials it can only decrease polynomially.  

Fig. 7 shows the exponential rate of convergence we 

have obtained for a model elliptic boundary value 

problem using hp-adaptivity. Polynomial convergence 

would appear as a straight line on this graph.  The 

curvature of the line obtained by a least squares fit to 

the data illustrates that exponential convergence has 

been obtained.  In our current research we are 

developing new error estimates that will allow us to 

apply hp-adaptive techniques to elliptic eigenvalue 

problems. 

 

 
 
Figure 7. Exponential convergence of the error vs. degrees of 

freedom for the hp-adaptive solution of an elliptic boundary value 

problem. 

 

With the recent addition of high order elements to our 

models, we are now beginning to perform numerical 

experiments on systems relevant to realistic atom traps.  

Currently we are investigation the effect of varying the 

scattering length of the interaction potential and 

eccentricity of the trapping potential on a model of 

Cesium atoms. We anticipate that the addition of hp-

adaptivity will further reduce the solution time to the 

point where we can perform experiments with the 

multi-channel time-dependent equations that are 

required for realistic models of quantum gates. 
 

 
 

References  

W.F. Mitchell and E. Tiesinga, Adaptive Grid 

Refinement for a Model of Two Confined and 

Interacting Atoms, Applied Numerical Mathematics 52 

(2005), pp. 235-250. 

 

W.F. Mitchell, Error Estimators for the hp Version of 

the Finite Element Method with Newest Node 

Bisection of Triangles, 8th U.S. National Congress on 

Computational Mechanics (July 2005). 

Participants 

W. Mitchell (MCSD); E. Tiesinga (PL) 



Yearly Report FY 2005                29 

Mathematical Modeling of 

Nanomagnetism 
 
Measurement, understanding, and control of magnetic 

phenomena at the nanoscale each require the support 

of mathematical models of the physics involved, and 

software that correctly implements and makes 

predictions based on these models.  The Object-

Oriented MicroMagnetic Framework (OOMMF) 

project provides this capability in a public domain 

package of portable software components organized in 

an extensible framework.  OOMMF software is widely 

used and cited in the physics and engineering 

literature. Current objectives are to continue to expand 

the features supported by components in the OOMMF 

framework, with focus on high priority items, such as 

thermal effects and spin transfer, motivated by their 

relevance to nanoscale sensor and spintronics work. 

Michael J. Donahue and Donald G. Porter 

 
 

Many existing and developing applications of 

nanotechnology make use of magnetic phenomena.  

Some of the most familiar and successful examples are 

information storage technologies such as magnetic 

recording media, GMR sensors for read heads, and 

magnetic RAM (MRAM) elements.  Computational 

modeling continues to support advances such as the 

novel patterned magnetic recording media that promise 

to achieve recording densities of 1 Tb per square inch.   

Applications of nanomagnetism modeling are 

widespread. For example, modeling was critical to the 

development of a fully magnetic logic gate and shift 

register accomplished at University of Durham and 

recognized by the Institute of Physics as one of the top 

ten stories in physics for 2002.  Other efforts aim to 

develop logic devices that carry information in the 

form of the spin of a charge carrier, so called 

spintronics devices.  In biotechnology, the use of 

paramagnetic beads to locate and position biological 

macromolecules is under study.  In materials science, 

the probing capability of ferromagnetic resonance is 

used to characterize and measure material properties, 

where an understanding of nanomagnetodynamics is a 

key to interpreting experimental results.  Other efforts 

in materials science are aimed at improved sensor 

designs capable of detecting magnetic fields that are 

both smaller in magnitude and more localized in space.   

In each of these areas, the NIST Object-Oriented 

MicroMagnetic Framework (OOMMF) system is in 

use to enable nanoscale science and engineering.  

OOMMF is a portable public domain package 

organized in an extensible framework to enable 

computational simulation of magnetic systems. 

One recent example of the use of OOMMF to support 

nanotechnology R&D is depicted in Fig. 8.  An image 

of 2000 nm diameter ring of ferromagnetic material 

was produced by a magnetic force microscope (MFM).  

Such ring elements are proposed for both storage and 

sensor applications, where their utility is critically 

dependent on their precise behavior.  The colors of the 

image represent the strength of stray magnetic field 

sensed at each location scanned above the ring.  An 

MFM directly measures stray field; it does not directly 

measure the magnetization pattern found in the ring 

itself.  A measured stray field does not uniquely 

determine what magnetization pattern produced the 

stray field. Also illustrated is a magnetization pattern 

computed by OOMMF software based on known 

parameters chosen to match the experimental work.  

The pattern of arrows represents the magnetization 

pattern predicted by the model, and it can be confirmed 

that the predicted pattern is consistent with the 

measured stray field. In complementary roles like this, 

modeling is able to indirectly deduce details of a 

nanoscale system that are not within the capability of 

direct measurement. 

   

Figure 8. Left: Image of 2000 nm diameter ring of 

ferromagnetic material produced by a magnetic force 

microscope.  Right: Magnetization pattern computed by 

OOMMF based on known parameters chosen to match the 

experimental work.  

Many of the equations governing nanomagnetism were 

established long ago.  The notable Landau-Lifshitz 

equation dates back to 1935, and William Fuller Brown 

established the fundamentals of micromagnetic 

modeling in articles and books published from the 

1940s to 1970s.  At that time, the applications of the 

theory were mostly limited to simple geometries that 

could be attacked analytically.  It was not until the 

1990s that widespread availability of significant 

inexpensive computing power made possible 

micromagnetic modeling for practical problems. 

Unfortunately, the accurate solution of the relevant 

equations is more difficult than many physicists and 
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engineers realize.  By the mid-1990s, many researchers 

and their students had produced their own simulation 

programs to support their work.  While their 

publications were careful to list details of experiments 

and analyses, their home-grown software would 

typically only merit a high-level description.  Usually 

the equations the software was meant to solve would be 

noted, but no reports of software testing were provided, 

and there was no opportunity to review its quality.  The 

problems solved by these computer codes were 

typically precisely matched to a particular experiment, 

and it was rare that two independent teams would 

perform precisely the same computations to enable 

comparison. 

 

Figure 9.  Part of the graphical user interface for OOMMF. 

In 1996, NIST challenged this research community 

with a standard problem, inviting all those with 

magnetic modeling simulation software to attempt to 

compute some properties of a magnetization reversal 

similar to those routinely reported in the literature at 

the time, but all starting from the same assumptions.  

The results were alarming.  The number of 

significantly different solutions almost matched the 

number of programs.  Subsequent research has 

discovered flaws in both the programs and the problem.  

An important value of OOMMF is that it provides a 

transparent benchmark against which any research 

team developing their own magnetic modeling 

software can compare their results.   

Those researchers for whom OOMMF provides all 

required modeling capabilities can, of course, also use 

OOMMF in place of developing their own software.  In 

addition, OOMMF is structured as an extensible 

framework of software components, so those users who 

have needs beyond OOMMF's current capabilities can 

often extend it to meet their needs without the need to 

rewrite a new software package from scratch. 

OOMMF has been remarkably successful in achieving 

its objectives. OOMMF has been downloaded more 

than 10,000 times. A growing number of peer-reviewed 

research publications cite use of OOMMF; more than 

300 are listed on the OOMMF web site. 

Current plans for OOMMF are to supply additional 

extension modules and to make improvements to the 

framework necessary to support the nanomagnetic 

simulations required in emerging research areas.  For 

example, NIST research in the development of ultra-

low field magnetic sensors requires reliable modeling 

of thermal effects, a component that OOMMF has until 

now not provided.  There is also considerable interest 

in representing the effects of spin transfer in 

nanomagnetic systems.  In each of these cases, research 

is active into determining the correct models.  
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Stability of Nanowires  

Metallic or semiconductor nanowires are important 

components in many electronic technologies.  At small 

length scales many materials exhibit unusual electrical, 

chemical, and thermal properties that are not observed 

in the bulk.  Applications include novel electronic 

devices ranging from high efficiency lasers and 

detectors to exotic single electron transistors and 

cellular automata.  The tendency of nanowires to 

fragment into nanospheres due to area-minimizing 

surface instabilities acts as a limit to the length of 

nanowires that can be used in nanodevices.  This 

instability can also be used beneficially as a 

mechanism for the self-organization of chains of 

nanospheres from unstable nanowires. We have studied 

analytically the effect of surface tension anisotropy on 

this instability in order to help understand and control 

nanowire fragmentation.  Our analysis predicts the 

wavelengths of the instability as a function of the 

degree of anisotropy of the surface energy of the 

nanowire. 

Geoffrey McFadden 

 
 

At the small length scales that characterize 

nanostructures, the importance of surface effects 

relative to volume effects becomes significant. Typical 

surface effects that can be important at the nanoscale 

include surface energy or capillarity, surface diffusion, 

surface adsorption, and surface stress and strain. In 

particular, the effects of capillarity must be taken into 

account in order to understand the tendency of 

nanowires to fragment when the rate of surface 

diffusion of atoms is high enough to allow shape 

changes to occur over practical time scales. 

As shown by Plateau in his classical studies of 

capillary instabilities, a cylindrical interface with an 

isotropic surface free energy is unstable to volume-

preserving axisymmetric perturbations whose 

wavelength exceeds the circumference of the cylinder. 

Such perturbations lower the total energy of the 

cylinder, leading to the breakup of the cylinder into a 

series of drops or bubbles. The stability of a liquid jet 

was subsequently studied by Lord Rayleigh, who 

argued that the length scale of the instability is 

determined by the perturbations having the fastest 

growth rate; the phenomenon has generally come to be 

known as the Rayleigh instability.  The Rayleigh 

instability arises in a number of diverse applications, 

such as ink jet printing, two-phase flow, quantum 

wires, fiber spinning, liquid crystals, and polymer 

blends.  

Because of the underlying crystal lattice, the surface 

energy of a liquid-solid or vapor-solid interface is 

generally anisotropic and depends on the orientation of 

the local normal vector at each point of the interface. 

The surface energy of a solid-solid interface between 

two crystals is also anisotropic in general, with the 

additional complication that the surface energy also 

depends on the direction cosines that characterize the 

relative orientations of the two crystals.  Here we have 

considered a model of this type in which the surface 

energy depends only on the local normal vector.  

 
Figure 10.  Equilibrium shapes for materials with cubic anisotropy. 

These shapes are energy minimizing surfaces that are the anisotropic 

versions of soap bubbles (the isotropic case). 

An observation that partially motivates this work is the 

apparent stability of elongated nanowires that are 

grown in a bridge configuration or epitaxially on a 

heterogeneous substrate. The nanowires (alternatively 

called nanorods or quantum wires) are “one-

dimensional” crystals with dimensions as small as one 

nanometer high, a few nanometers wide, and can be as 

long as a micron.  There are long-standing studies on 

experimental techniques to grow nanowires, and the 

stability of these nanowires is beginning to come under 

study.  Another motivation for the work is the recent 

observation that the Rayleigh instability of a nanowire 

can be used to produce self-organized chains of 

nanospheres with interesting electrical and opto-

electronic properties. In either case it is desirable to 

develop models to predict the length scales of the 

instabilities in order to assess the geometry of the 

resulting structures. 

Continuum modeling of nanowires provides some 

guidance as to their expected stability, though the strict 

applicability of continuum models is limited if the 

length scales approach atomic dimensions.  There are a 

number of possible mechanisms that could stabilize a 

nanowire, including elastic interactions between the 

wire and the substrate, quantum electronic shell effects, 

and surface energy anisotropy.  A useful model of the 

surface energy anisotropy for a cubic material is given 

by the expression γ (nx,ny,nz) = γ
0 [1 +  4 ε  (nx

4
 + ny

4
 + 

nz
4)].  In the above figure we show examples of 3D 

equilibrium shapes co responding to this surface 

energy. The shapes are smooth for -1/18 < ε  < 1/12.  

For ε  < 0, the shapes resemble rounded cubes, with 
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[110] edges first forming at ε  = -1/18.  As ε  decreases 

below -1/18, the edges extend toward the [111] 

directions, merging to form a corner for ε  = -5/68. For ε  > 0 the shapes are octahedral, with [100] corners first 

forming at ε  = 1/12. These equilibrium shapes are most 

easily computed using the 
ξ

-vector formalism of 

Hoffman and Cahn, which produces a closed-form 

expression for the equilibrium shape in terms of the 

surface energy. This is also useful in formulating the 

variational problem for the stability of a nanowire. 

In collaboration with K. Gurski, George Washington 

University, and M. Miksis, Northwestern University, 

we have considered differentiable surface energies with 

anisotropies mild enough that the surface of the wire is 

smooth and does not exhibit any missing orientations. 

In order to examine the stability of the wire using a 

variational approach, we employ a general energy 

functional that describes the total surface energy of the 

system. This expression and the constraint of constant 

volume of the wire are perturbed about the two-

dimensional equilibrium shape.  The higher order terms 

in this perturbation expansion produce a condition for 

stability.  For constant volume, if the perturbation 

increases the energy, the equilibrium state is stable, 

otherwise it is unstable. 

 
Figure 11. Capillary instability of a nanowire with an anisotropic  

surface energy with three-fold symmetry about the wire axis. 

For small levels of anisotropy, we evaluate the stability 

of an isolated nanowire approximately using 

asymptotics.   For larger amplitudes of anisotropy, we 

compute solutions numerically.  We find that surface 

tension anisotropy can either promote or suppress the 

Rayleigh instability, depending on the orientation of 

the nanowire and the magnitude and sign of the 

anisotropy.  For general surface energies we derive an 

associated eigenproblem whose eigenvalues govern the 

stability of the wire. The eigenproblem is described by 

a pair of coupled second-order ordinary differential 

equations with periodic coefficients, which generally 

lack closed-form solutions. We have applied the 

analysis to a number of examples, including the above 

case of a cubic material. We have computed the 

stability of the wire to general perturbations when the 

axis of the wire is in a high symmetry orientation such 

as [001], [011], or [111].  

In addition to determining the stability of an isolated 

wire, we have also examined how both the anisotropy 

of the surface energy of the wire and the interaction of 

the wire with a substrate affects the stability of the rod. 

The equilibrium configuration of a wire in contact with 

a substrate has an elegant description that can be 

obtained by again appealing to the Hoffman-Cahn 
ξ

-

vector formalism. This approach determines the contact 

angles in terms of the surface energies of the phases 

that meet at the contact line. Using general anisotropic 

surface energies we have then derived an associated 

eigenproblem that describes the stability of the system. 

The problem is described by a pair of coupled second-

order ordinary differential equations with periodic 

boundary conditions along the axis of the rod and 

boundary conditions arising from the contact angles 

between the wire and substrate. We have considered 

the effects of the overall orientation of the crystal 

relative to the substrate and examined a range of 

contact angles. The substrate is assumed to be rigid 

with an isotropic surface energy.  

We applied the analysis to a number of examples, 

including the case of a cubic material, and compute the 

stability of the wire to perturbations when the axis of 

the wire is aligned parallel to the high symmetry 

orientations [001], [011], and [111]. We assumed a 

weak anisotropic surface energy to eliminate missing 

orientations on the wire. The magnitude and the sign of 

the anisotropy determine the relative stability in 

comparison to the isotropic case.  In general as the 

contact angle tends to 90 degrees the wire becomes 

more stable, which is analogous to the stability of a 3D 

planar film.  
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Improving Image Resolution in 

Nanotechnology 

Current nanoscale electron microscopy images remain 

of relatively low quality.  To address this issue we are 

developing improved mathematical tools for image 

analysis, and the use of such tools to provide 

measurable increases in resolution in state-of-the-art 

scanning electron microscopy. One very major 

difficulty lies in the large image sizes, often on the 

order of 1024µ1024 pixels, or larger. This presents 

formidable computational challenges. Many new 

techniques are based on nonlinear partial differential 

equations, and typically require thousands of 

iterations, and several hours of CPU time, to achieve 

useful results.  Real-time image processing algorithms 

are exceedingly rare and very highly sought after. 

Alfred Carasso 

 
 

A fundamental problem in scanning electron 

microscopy (SEM) is the fact that the shape of the 

electron beam that produced the image is seldom 

known to the microscopist.  Therefore, image 

deblurring must proceed without knowledge of the 

actual point spread function that caused the blur.  Such 

so-called blind deconvolution is fraught with difficulty, 

and little authoritative discussion of this subject is to be 

found in most image processing textbooks. 

Nevertheless, in recent years, considerable progress 

was achieved at NIST in developing mathematical 

technologies that lead to real-time image processing 

algorithms.  In addition, a unique new capability has 

been created, the so-called APEX method, that can 

achieve useful blind deconvolution of 1024ä1024 SEM 

imagery in about 60 seconds on current workstations.  

Because of its manifold applications, this technology is 

the subject of intense and continuing research and 

development. 

The APEX Method 

The APEX method is an FFT-based direct blind 

deconvolution technique that can process complex high 

resolution imagery in seconds or minutes on current 

desktop platforms. The method is predicated on a 

restricted class of shift-invariant blurs that can be 

expressed as finite convolution products of two-

dimensional radially symmetric Lévy stable probability 

density functions. This class generalizes Gaussian and 

Lorentzian densities but excludes defocus and motion 

blurs. Not all images can be enhanced with the APEX 

method. However, we have shown that the method can 

be usefully applied to a wide variety of real blurred 

images, including astronomical, Landsat, and aerial 

images, MRI and PET brain scans, and SEM images. 

APEX processing of these images enhances contrast 

and sharpens structural detail, leading to noticeable 

improvements in visual quality. 

 

 
Figure 12.  APEX blind deconvolution of state of the art Scanning 

Electron Microscope imagery produces measurable increases in 

sharpness.  (A) Original 1024x1024 Tin sample micrograph has 

Lipschitz exponent α  = 0.40 and TV norm = 13000. (B) Sharpened 

image has α  = 0.29 and TV norm = 34000. 

 
Figure 13.  APEX sharpening of SEM imagery.  (A) Original 

1024x1024 Magnetic Tape sample has α  = 0.35 and TV norm = 

14000.  (B) Sharpened image has α  = 0.26 and TV norm = 39000 

Application to SEM Imagery 

Recently, a new Hitachi Scanning Electron Microscope 

was acquired by the NIST Nanoscale Metrology 

Group, capable of producing higher quality imagery 

than had previously been possible. A major challenge 

for our deconvolution algorithms was to demonstrate 

measurable increases in sharpening of such state of the 

art imagery.  Two sharpness measures were used, the 

image Lipschitz exponent α , and the image discrete 

total variation or TV norm.  Image sharpening 

increases the TV norm, due to the steepening of 

gradients, while it decreases the Lipschitz exponent as 

finer scale features become resolved.  Examples of 

such sharpening are shown in Figs. 12 and 13.  In Fig. 

12A, the original 1024µ1024 Tin sample micrograph 

has TV norm of 13000 and Lipschitz exponent α  = 

0.40.  The APEX-sharpened Fig. 12B has TV norm = 
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34000 with α  = 0.29.  In Fig. 13A, the original 

1024µ1024 Magnetic Tape sample has TV norm = 

14000 with α  = 0.35. The APEX-processed Fig. 13B 

has TV norm = 39000 with α  = 0.26.  These very 

substantial sharpness increases are typical of those 

obtained in numerous other test images. 

Measuring Image Smoothness 

Most commonly occurring images f(x,y) are not 

differentiable functions of the variables x and y.  

Rather, these images display edges, localized sharp 

features, and other fine-scale details or texture.  Many 

digital image-processing tasks require prior 

specification of the correct mathematical function 

space in which the true image lies.  If an image is 

incorrectly postulated to be too smooth, the processing 

algorithm may produce an overly smoothed version of 

the true image in which critical information has been 

lost.   

During the last 10 years, a very considerable amount of 

image analysis research has been based on the 

assumption that most images belong to the space of 

functions of bounded variation.  However, it has been 

subsequently discovered that such so-called total 

variation (TV) image processing sometimes results in 

unacceptable loss of fine-scale information.  This 

phenomenon is now known as the staircase effect.  In 

papers published in 2001, French researchers 

Gousseau, Morel, and Meyer, showed that most natural 

images are, in fact, not of bounded variation, and that 

TV image-processing techniques must inevitably 

smooth out texture.  

Correct characterization of the lack of smoothness of 

images is a fundamental problem in image processing.  

It turns out that so-called Lipschitz spaces are the 

appropriate framework for accommodating non-smooth 

images. The L
P Lipschitz exponent α  for the given 

image, where 0 < α  < 1, measures the fine-scale 

content of that image, provided the image is relatively 

noise free.  Heavily textured imagery has low values 

for α , while large values of α  indicate that the image is 

relatively smooth.  Estimating an image’s Lipschitz 

exponent is a delicate problem.  We have developed a 

new, computationally efficient, method for estimating α .  It merely requires blurring the image by convolution 

with a specific singular integral kernel, and evaluating 

the discrete L
P norm of the difference between the 

blurred and original images. The rate at which this LP 

norm tends to zero, as the kernel approaches the Dirac δ
-function, is directly related to the Lipschitz exponent α .  Since the required convolutions can be 

accomplished by FFTs, very minimal computational 

effort is thus needed to implement the resulting 

procedure.  In addition, this approach has the 

advantage of allowing consideration of substantially 

wider Lipschitz spaces than is mathematically possible 

with existing procedures, thereby encompassing a 

much wider class of images. 

A B

A

B

 

Figure 14.  The Lipschitz exponent α  in an image can be obtained by 

plotting log (||Ut f - f||/ ||f||) versus log t as t tends to zero, where U t 

is the Poisson kernel with width t.  The slope of dashed line which 

asymptotes the solid trace for -6 < log t < 0 is the Lipschitz 

exponent.  Here, the original SEM image A has α  = 0.35.  The APEX 

processed image B reveals more fine scale structure and  has lower 
α

 

= 0.26. (See Fig. 13 for larger images of A and B.) 

Significant potential applications of this technology 

include the routine monitoring of image sharpness and 

imaging performance in electro-optical imaging 

systems, the performance evaluation of image 

reconstruction software, the detection of possibly 

abnormal fine-scale features in some medical imaging 

applications, and the monitoring of surface finish in 

industrial applications.  In addition, specifying the 

correct Lipschitz space wherein an image lies can be 

used to solve the blind image deconvolution problem in 

a way that preserves texture, i.e., fine detail, in a 

recovered image.  We recently have developed a new 

method, the Poisson Singular Integral (PSI) method, 

which yields an excellent approximation to optimal 

image filtering for a very wide class of images. 
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Creating Visual Models of 

Nanoworlds  

The place where quantum and macro effects meet, the 

nanoworld is full of the unexpected.  In such an 

environment, visual models of laboratory and 

computational experiments can be critical to 

comprehension.   We are developing an immersive 

visual modeling system that enables scientists to easily 

view and interact with their data in multiple ways in 

real time. 

Howard Hung, Steve Satterfield, James Sims, 

Adele Peskin, John Kelso, John Hagedorn, 

Terrence Griffin, and Judith Terrill 

 
 

Computational and laboratory experiments are 

generating increasing amounts of scientific data.  

Often, the complexity of the data makes it difficult to 

devise a priori methods for its analysis, or the data is 

from new landscapes, such as the nanoworld, where we 

have little experience.  Moreover, there may be 

ancillary data, from databases for example, that would 

be helpful to have available.  We are developing visual 

analysis capabilities in an immersive environment that 

allow scientists to interact with data objects in a three-

dimensional landscape rather than simply viewing 

pictures of them.  Fully immersive computer graphics 

include one or more large rear projection screens to 

encompass peripheral vision, stereoscopic display for 

increased depth perception, as well as head tracking for 

realistic perspective based on the direction the user is 

viewing.  With visual exploration, scientists can easily 

perceive complex relationships in their data, quickly 

ascertaining whether the results match expectations.  

Real time interaction adds to the potential for speeding 

the process of insight.  

In a fast moving field like nanotechnology, it is 

important to be able to create and interact with new 

visual models quickly.  Our visual environment is built 

for generality, flexibility and speed.  Rather than a 

single monolithic program, it is a collection of tools 

designed to work together to create, display, and 

interact with visual models. We have created three 

main categories of tools: infrastructure software, 

representation software, and scene interaction software.  

We join programs together using Unix pipes and filters 

for creation and transformation. We construct 

Dynamically Shared Objects (DSO's) for functionality, 

and scenegraph objects for ease of placement.   

DIVERSE 

Our visual environment centers around a core 

infrastructure program called DIVERSE (Device 

Independent Visualization Environment –

Reconfigurable, Scalable, Extensible).  DIVERSE, 

which was developed by Virginia Tech with support 

and technical contributions by NIST, is an interface 

that facilitates the development of immersive computer 

graphics programs for use on a wide variety of graphics 

displays.  DIVERSE provides a toolkit to load in 

previously compiled objects, called DSOs.  DSOs can 

be used to describe the graphics display, input devices, 

navigation techniques or interaction styles for a given 

visualization.  Using collections of DSOs, applications 

can be reconfigured without recompiling.  The same 

DSO that defines how a wand controls an object can be 

used both in an immersive environment and on a laptop 

computer.  With the ability to import the output of 

conventional visualization programs, and access to the 

increasing capabilities of commodity graphics cards, 

we have a very rich environment in which to express 

and communicate visual models. 

 

Figure 15.  Image of a quantum dot created from the output of a 

computer simulation of the optical properties of nanostructures. The 

spheres represent s-orbitals. 

Representation 

Representation refers to the process of transforming 

raw data into a visual geometric format that can be 

viewed and manipulated.  The key to quickly and 

easily visualizing scientific data in an immersive 

environment is the capability provided by the set of 

tools used to convert raw data to immersive data.  We 

have created a variety of tools to make glyphs, color 

them, place them, and render them to a desired level of 

transparency and other properties.  While our system is 

based on our own internal representation, we take 
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advantage of representations computed by other 

packages by providing tools to take the output of 

common packages and convert them into the format 

that places them in our environment.  

Interaction 

For efficient scientific exploration, it is important to 

have user interaction that is both easy to set up and 

easy to adapt to differing needs.  Individual DSOs that 

add new functionality to our visualization software 

system are loaded at run-time, and their behavior is 

cumulative. Together, a set allows for a huge range of 

combinations data visualization modes.  We have 

developed a wide range of DSOs that allow a user to 

interact with the objects to be viewed.  This includes 

functionality to move objects around, select individual 

objects or sets, assign functionality to the selections, 

interact with outside software, bring data into the 

system, send data out of the system, and load or unload 

objects during visualization.  They can also 

interactively select the level of detail in a scene.  

Individual DSOs can add simple capability to a 

scenegraph, such as adding a particular light source or 

an object to represent a pointer for the user to select 

objects.  DSOs can also add tasks to the objects of a 

scenegraph.  When selected, an object can be given the 

task of turning on or off another object or itself, or 

executing a command to interact with another DSO or 

an external program.  Objects can change visibility, 

initiate new simulations, define clipping planes, and so 

on.  DSOs provide a variety of ways to navigate 

through the environment, including changing the scale 

at will.  They allow viewing of individual scenes as 

well as time sequences (i.e., movies).  The output of an 

interaction can be saved as a simple image, as a movie, 

or the interaction itself can be saved as an experience 

that can be replayed at a later time. 

Applications to the Nanoworld 

We have successfully applied our visual analysis 

techniques and tools to the study of a variety of 

nanoscale phenomena.  Among these are visual 

analyses of 

• s-orbitals for the simulation of electronic and optical 

properties of complex nanostructures such as 

semiconductor nanocrystals and quantum dots (see 

Fig. 15), 

• electric, magnetic, and energy field vectors from the 

simulation of optical scattering by metamagnetic 

materials (see Fig. 16), 

• intermediate voltage electron microscope 

measurement approaches to attain three-dimensional 

chemical images at nanoscale-resolution, and 

• dynamics of molecular interactions leading to the 

formation of smart gels. 

 
Figure 16.  Image of the electric, magnetic, and energy field vectors 

in a single time step in the simulation of resonant optical scattering 

by metamagnetic materials.  
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Measurement Science in the 

Virtual World 
 

We are developing tools for selection and measurement 

from within the immersive visualization environment. 

These visualizations and their accompanying analyses 

then yield quantitative results that extend the 

qualitative knowledge that is the typical product of 

visualization. 

 

John Hagedorn, Adele Peskin, John Kelso, 

Steve Satterfield, and Judith Terrill 

 
 

Laboratory experiments, computational experiments, 

measurement, analysis, and visualization are typically 

separate activities.  This slows down the rate at which 

knowledge is gained.  Combining them, where feasible, 

yields greater efficiency, and the resulting synergy can 

deepen understanding.  We are working on combining 

measurement, real time immersive visualization, and 

analysis.  Our immersive visualization environment is 

the main tool which enables this. 

It is not always possible to perform desired 

measurements on laboratory data during the course of a 

physical experiment.  For example, a reconstruction 

phase may be needed to get the data into a form where 

it can be measured.  An example is tomographic 

reconstruction. The same is true for computational 

experiments. While measurements are typically 

gathered during runs, there are also many reasons why 

measurements may need to be taken during the analysis 

stage.  Measurement from within the immersive 

environment provides unique capabilities in this regard.  

We are working to use these capabilities to enable such 

virtual measurements to be taken both during and after 

laboratory and computational experiments.   

To bring measurement science into the virtual world 

we need the objects in the environment to be drawn 

and positioned with higher precision than is typical in 

applications of immersive virtual reality.  To do this we 

first need the virtual space to be calibrated.  Then we 

need to be able to select and measure properties of 

objects.  Finally, we need to be able to operate on those 

measurements and relate them to both the immersive 

environment and the real world.  We describe our 

approach to each of these in turn. 

Calibration 

The use of motion tracking devices is essential in 

immersive visualization systems.  The location and 

orientation of the user’s eyes must be continually 

tracked so that the system can render images of the 

virtual world, in stereo, in real-time. In addition, 

motion tracking is also commonly used to track hand-

held devices (e.g., a wand) that operate as tools in the 

virtual world created within the immersive display. 

 

 

 
Figure 17.  The top image shows visual artifacts due to tracker 

error. The bottom image shows the same scene with tracker data 

corrected. 

 

Environmental factors such as the presence of metallic 

objects and electromagnetic fields generated by video 

monitors contribute substantially to errors in 

measurements reported by electromagnetic tracking 

devices.  We have developed a method for calibrating 

and correcting location and orientation errors from 

electromagnetic motion tracking devices. This includes 

a new algorithm for interpolating rotation corrections at 
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scattered data points. This method, unlike previous 

methods, is rooted in the geometry of the space of 

rotations.  Results have shown large improvements in 

the precision of both location and orientation 

measurements. The methods impose minimal 

computational burden. 

Selection, Measurement, and Analysis 

We have developed a capability for linear 

measurements in the immersive environment. Our 

objective is to build a software system within the 

environment that integrates the following tasks: (1) 

linear measurement, (2) analysis of the collected 

measurements, (3) display of the results, and (4) 

interactions with the data and analyses that will enable 

grouping of results. The goal of these tasks is to 

achieve greater understanding by generating 

quantitative results. 

There are two main components to our implementation.  

The first is software that allows the user to manually 

make a series of linear measurements in the immersive 

environment.  The second is a standardized 2D user 

interface displaying the measurement statistics and 

distribution in tabular and histogram form.  

Our main objective in designing the user interface was 

to make the 3D measurement task direct and natural. 

The user makes a linear measurement simply by 

moving the hand-held wand to a point in the 3D virtual 

space, pressing a button on the device, then moving to 

a second point and pressing the button again.  Visual 

feedback is given at each step of the process and the 

user is able to adjust each end point simply by grabbing 

it with the wand and repositioning it.  The process is 

fast, simple, and intuitive.  A user interface enables one 

to bring the measurements into an analysis and to 

display the results.  In Fig. 18, the user has made 

measurements (shown in blue). The measurements 

have been brought out of the environment and a mean 

and standard deviation computed.  They are also shown 

as a histogram in the upper right.  Portions of the 

histogram can be selected and highlighted back in the 

immersive environment for a better understanding. 

We have found that immersive visualization enables 

both qualitative and quantitative understanding of 3D 

structure that was not otherwise possible.  These types 

of measurements made in the virtual environment 

would be very difficult to make with typical desktop 

visualization techniques.  We are planning a variety of 

extensions to our selection and measurement capability 

for the future. 

 

 

 
Figure 18.  A user in the NIST immersive visualization environment 

making measurements on a scaffold for tissue engineering. The 

measurements are shown in blue. The histogram of results is shown 

in the upper right. 

 

Current Applications 

We are currently working on a variety of applications 

spanning several disciplines.  

• Reference scaffold for Tissue Engineered materials 

• Correlate microstructure with global properties of 

hydrating cement 

• Particle identity and distribution at the nanoscale 

• Stress and strain at the nanoscale  
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Identifying Objects in LADAR 

Scanning Data 

Laser scanning technology has developed into a major 

tool for geographic and geometric data acquisition. We 

are investigating the feasibility of using such 

technology for monitoring construction sites. A core 

problem in the analysis of such data is object 

recognition. Recently we demonstrated a technique for 

identifying particular objects, such as I-beams in noisy 

LADAR scanning data.  

David Gilsinn  

 
 

During the past decade, laser-scanning technology has 

developed into a major vehicle for wide-ranging 

applications such as cartography, bathymetry, urban 

planning, object detection, and dredge volume 

determination.  One advantage of such scanning data is 

that it can provide information on spatial relationships 

that ordinary photography cannot.  The NIST Building 

and Fire Research Lab (BFRL) is investigating the use 

of such technology to monitor progress of work on 

construction sites. Here laser scans taken from several 

vantage points are used to construct a surface model 

representing a particular scene.  A library of 3D 

representations of construction site objects, obtained 

from CAD data sets, would also be used.  The objects 

would be loaded into an associated simulation system 

that tracks both equipment and resources based on real-

time data from the construction site obtained from laser 

scans.   

Pick-and-place control of construction site objects is a 

major application.  With automation and robotics 

entering on construction site scene, vision systems, 

such as LADAR (laser direction and ranging), will be 

incorporated for real time object identification, based 

on 3D library templates.  Once objects, such as I-

beams, are located, robotic crane grippers can be 

manipulated to acquire the I-beam.  We are developing 

and testing algorithms for this particular task.  

LADAR scans of I-beams of multiple lengths and 

angular poses relative to the scanning LADAR have 

been generated (see Fig. 19).  A database of design 

specifications for potential I-beam candidates has been 

created.  The LADAR scans generate a large number of 

points, ranging in the millions, which can be acquired 

seconds. These scans usually contain a large number of 

noisy data values arising from ground hits to phantom 

pixels caused by beam splitting at sharp edges.  

 

Spheres for 

registration 

 

Figure 19.  Experimental configuration for scanning an I-beam by a 

LADAR placed at the camera location. The white lines on the floor 

are alignment marks for setting the I-beam at different angles 

relative to the LADAR. The spheres on the tripods are located for 

coordinate registration with a world coordinate system. 

 

 

Figure 20.  The results of a scan of the I-beam in Fig. 19. The flat 

areas on either side of what appears to be the I-beam are floor hits. 

Notice the results of hits on the three tripods, one of which is seen as 

somewhat of a shadow in the lower middle of the scene. Also note the 

occlusion shadowing. 

Fig. 20 shows a typical LADAR scan. Whereas the 

photograph in Fig. 19 provides a clear image it does 

not provide coordinate information. Although each of 

the points in the figure are associated with an (x, y, z) 

coordinate relative to the LADAR, the identification of 

the nature of the objects scanned is quite difficult. The 

challenge is to use the database of design 

specifications, in this case of I-beams, to locate an 

object in the scanned image and to report its center-of-

mass location and angular pose relative to the LADAR.  

Three main tasks must be performed: segmenting the 

data points into groups corresponding to likely objects, 

identifying the segmented objects with the highest 

likelihood of being the object sought, and registering 

the object relative to a world coordinate system so that 

the LADAR scan can be related to a global coordinate 

system in which other objects are potentially located. 

Segmentation Algorithms 

Two algorithms have been developed.  The first uses 

binning of the scanned points to reduce data volume. 

The bins are then examined to identify those that are 

likely to be phantom points or floor hits. Phantom 

points are coordinate points generated by the LADAR 

due to the internal process of averaging the returned 

beam signal. Due to the finite size of a LADAR beam, 
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a targeted point at the edge of an object can lead to a 

partial signal returns from both the object and a more 

distant one. The entire signal is averaged and a 

coordinate point returned somewhere between the two.  

 

 
Figure 21.  Anomalies from scanning a box from different directions. 

Phantom points off of the top edges are seen as two lines beginning 

at the edges. Phantom points along the sides of the box are due to the 

averaging of LADAR hits along the sides of the box. 

In Fig. 21 a line of phantom points is seen emanating 

from the top edges of the test box.  Phantom points due 

to hits along the edges are also visible. Bins that 

include phantom points and floor hits can be eliminated 

since they are likely to be sparsely populated.  Object 

identification occurs when the bins are grouped into 

potential objects and bounding boxes are placed around 

them. These boxes are compared with bounding boxes 

defining I-beams in the database and the best fit is 

reported, along with the center-of-mass and pose of the 

bounding box. An example of the bounding box placed 

around the I-beam is shown in Fig. 22. 

 
Figure 22.  Bounding box around the I-beam scanned in Fig 20. 

The second algorithm uses Triangulated Irregular 

Networks (TINs) to mesh the data.  The density of the 

triangulated points is then visually examined to identify 

those triangle groups most likely to form objects. A 

TIN of the data in Fig. 20 is illustrated in Fig. 23. The 

bounding box procedure for object identification is 

then applied as before. Further work is needed with this 

algorithm to eliminate manual density inspection.  

Evaluation 

In order to determine the accuracy of the predicted 

pose of the I-beams, measurements at the four upper 

corner points of the I-beams were made using a laser-

based Site Metrology System (SMS) developed by 

BFRL.  These reference points were used to measure 

the performance of the algorithms in their ability to 

locate the points.  The binning algorithm performed 

well in identifying length of the I-beam, the location of 

the center of the I-beam, and the angle relative to the 

LADAR scan direction until the I-beam’s major axis 

was placed at 30 degrees and 0 degrees relative to the 

scan direction. Thus as the major axis of the I-beam 

became more aligned with the scan direction of the 

LADAR the algorithm had a harder time identifying 

the I-beam.  The TIN algorithm performed better than 

the binning algorithm as the I-beam axis became 

aligned with the scan beam direction. However, as in 

the binning algorithm the TIN algorithm could not 

identify the I-beam when the major axis was aligned 

with the scan beam. 

 
Figure 23.  TIN image of the data in Fig 20. The density of triangles 

can be used to locate the I-beam and reference sphere tripods. 

Future work will involve extending the bounding box 

concept to other shapes such as polygons, cylinders, 

etc. in order to develop a general comparison algorithm 

that covers most objects located at construction sites, 

such as vehicles, gas cylinders, etc. 
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