SUBROUTINE MVMMCD( TRANS, N, M, X, LDX, Y, LDY ) * .. * .. Scalar Arguments .. INTEGER LDY, LDX, M, N, TRANS * .. * .. Array Arguments .. DOUBLE PRECISION Y( LDY, * ), X( LDX, * ) * .. * * Purpose * ======= * * Compute * * Y(:,1:M) = op(A)*X(:,1:M) * * where op(A) is A or A' (the transpose of A). The matrix A is a block * tridiagonal matrix resulted from the finite difference discretization * of a 2-D model convection diffusion operator, * * L[u] = - u_xx - u_yy + 2p_1 u_x + 2p_2 u_y - p_3 u. * * The constant parameters p1, p2 and p3 in the convection-diffusion * operator may be changed. * * The convection-diffusion operator is discretized on a K x K square * grid, and resulted in the matrix A of order N = K^2. * * Arguments * ========= * * TRANS (input) INTEGER * If TRANS = 0, compute Y(:,1:M) = A*X(:,1:M) * If TRANS = 1, compute Y(:,1:M) = A'*X(:,1:M) * * N (input) INTEGER * The order of the matrix A. N has to be K*K for an integer K. * * M (input) INTEGERS * The number of columns of X to multiply. * * X (input) DOUBLE PRECISION array, dimension ( LDX, M ) * X contains the matrix (vectors) X. * * LDX (input) INTEGER * The leading dimension of array X, LDX >= max( 1, N ) * * Y (output) DOUBLE PRECISION array, dimension (LDY, M ) * contains the product of the matrix and vectors. * * LDY (input) INTEGER * The leading dimension of array Y, LDY >= max( 1, N ) * * ===================================================================