
8/11/2011 1

Measuring Uncertainty in

Scientific Computations Using

the Test Harness1

Brian T. Smith

Numerica 21 Inc.

August 3, 2011

IFIP WG 2.5 Working Conference 11

1The design of the test harness was supported in part by a DOE Phase 1

SBIR award DE-FG-02-04ER84028, July 14, 2004—April 12,2006

Introduction
• ―A measured value is meaningless without

a quantitative statement of its quality in the

form of an uncertainty‖
– From A Framework for Uncertainty in Measurement,

NPL, June 5, 2007

• This is just as true about scientific

computation as it is about physical

measurement
– Software is useless unless the uncertainty in the results

due to changes in its input are measured or analyzed

and is demonstrated to be consistent with what is

predicted from the characteristics of the problem being

solved
8/11/2011 2

This Presentation

• This presentation is about a tool to help

provide assessment of uncertainty in

scientific computation that

– Depends on measured data

– Depends on robustness of the algorithms

– Depends on the correctness of the

implementation

8/11/2011 3

Software Development

• We write software to provide computations for

some problem such as:
• Modeling the physical phenomenon (weather)

• Solving some mathematical problem (solve a linear system of

equations)

• ...

• In some cases, we have expectations (ideally

mathematical models) of how the computations

depend on the input data/parameters.

8/11/2011 4

Software Devel. Continued

• In other cases, we have no expectations but

want to discover what the uncertainty of the

results are relative to the input data/parameters.

• What is presented is a general purpose tool TH

– Helps with the measurement of uncertainty of results

with respect to changes in input data or other

changes of interest (different algorithm or different

implementation).

– It is designed and has been used to support testing of

substantial packages of software (ASAP and BSSI)

8/11/2011 5

Outline Of The Talk

• What is the test harness?
• Its purpose and approach

• Its design

• Its installation in the application code

• Its operation

• Its support tools

• Case study
• Measuring uncertainty in software to compute magnetic

vector potentials around 3-D objects using a boundary

element method

8/11/2011 6

What Is The Test Harness?

• A change-detection tool to measure/diagnose

changes made to code
• The measures are user selected or user determined

• Can be used to measure changes in results when the input is

perturbed

• A tool package for large production code or

libraries with components to:
• Analyze code

• Insert probes at desired locations

• To monitor change in results

• To measure change in intermediate values

 8/11/2011 7

Its Design

• Comparison of results from two "nearly equal"

codes: Examples

• Codes under development
– one version is the "benchmark"

– the other version is the "enhanced" version

• Codes being optimized

– one version is the non-optimized version

– the other version is the optimized version

• Codes being ported

– one version is the development machine

– the other version is the new machine

8/11/2011 8

Design Continued

• Uncertainty testing
• One version runs with base data

• The other version runs the perturbed data

– The difference in results measures the uncertainty of the

solution to changed data or to whatever changed.

8/11/2011 9

Design Continued

• Codes with the test harness installed in them run

on one of two modes:

– Generate mode:

• Perform the computation

• Write out data being monitored -- choices include:
– Final results

– Intermediate results

– Initial data

– At any specified in the code

• - Check mode
• Perform the computation

• Read saved data and compare with the data from the current

computation
10 8/11/2011

Design Continued

• Probes are user-determined -- either
• Hand inserted (a single line)

• Default inserted by the tools at each entry and exit

point of specified procedures

• Probes specify:
• Variable to be monitored

– written out when in generate mode

– read in and compared, when in check mode

• Variable to be perturbed
– perturbed in check mode

– ignored in generate mode

8/11/2011 11

Design Continued

• Tools perform the following operations:
• Inserts probes that trace execution only

• Inserts probes at default places (exit and entry of

specified procedures)

• Builds and inserts code to perform the data

collection or perturbation

• Builds and inserts code to perform the data

reading and comparison

8/11/2011 12

Design Continued

• Default procedures for perturbing and

performing data comparisons are provided

-- can select:
• Identity comparison

• Relative differences

• Absolute differences

• Thresholds above which the user is notified

• Type of comparison for arrays

– Norms

– Relative to elements or norm

8/11/2011 13

Design Continued

• Names of user-defined procedures can be

specified to:
• Perform the comparisons

• Perturb the data

– In both cases, the data environment at the

probe point is accessible to these user-

specified procedures via arguments

8/11/2011 14

8/11/2011 15

The Approach – The Application Code

Printed

Results

Application

Output Data

Input Data

Without Test

Harness Installed

Insert INCLUDE lines into

application code as follows:

• Specification part

• Initialization

• Input probes

• Output probes

• Specific probes

• Perturbing probes

• Finalization

Application

Code

Monitoring Required:

 in main program

Optional:

 in any selected subprogram

With Test Harness

Installed

Printed

Results

Application

Output Data

Input Data

Application

Code

8/11/2011 16

Building The Application With The Test

Harness Installed

• Builder Input (user-
supplied)

– Variables To Monitor

• Subprogram

• Name

• Declaration

• Identity/closeness
check strategy

• Frequency

• Debug Levels

Builder Tool

Application

Code With TH
Builder Input INCLUDE Templates

INCLUDEs For

Active Harness

Files

INCLUDEs For

Inactive Harness

Files

Diagnostics

 Code and input

inconsistent

8/11/2011 17

Operation With TH

Modes
Generate Mode Check Mode

Output From TH

* Storage Sizes of Monitored Data

*+ Diagnostics

*+ Timing Performance per routine

 monitored

TH Application Code

with INCLUDEs

Printed

Output

 Monitoring

data

*

Application

Input

TH Input

Gen. Mode

TH Application Code

with INCLUDEs

Printed

Output

+

Application

Input

TH Input

Check. Mode Monitoring

data from

gen. mode

8/11/2011 18

Usage Scenario

Time

Enhancements

Runs in

generate

mode

Runs in

check

mode

Original

Code

Enhanced

Code

Monitoring …

Change

monitoring

No monitoring …

Monitoring …

No monitoring

Minimize this part

…

8/11/2011 19

The TH Tools

Analyzer

Application Code

Installer Probe Generator Symbol Table Displayer

Builder

Compiler

Formatted Symbol

Tables

Procedure List Procedures To Be

Probed

Application Code

With Include

Lines

Modifiable Input

Files

Application

Specific Include

Files

Compliable

Application Code

With TH Installed

Compliable Application Code

With TH Installed

Templates

The Case Study -- Outline

• Description of problem solved

• Description of software

– Size in lines/procedures

– Algorithms

• Matrix assembly

• Boundary integration accuracy

• Linear equation solver

• Some simple examples of measuring uncertainty

of results
• Depending upon input boundary condition

• Depending on internal values (quadrature points and weights)

8/11/2011 20

Software Studied

• Examine a package of code to solve the 3-D vector

Laplace equation
• Application is magnetic potentials and fields surrounding 3-D

objects

• Computational expensive operation for "real" objects in "real‖

environments

• The approach is to use a boundary element method where the

solution on the boundary is completely determined from boundary

conditions and that solution, using boundary integrals

• The solution at any point in the interior of the boundary can be

computed by evaluating boundary integrals using the boundary

solution. (The boundary conditions can be flipped and the problem

re-solved to provide data to compute the solution at an exterior

point.)

8/11/2011 21

Software Continued

• The package consists of:
– Over 300 procedures

– Standalone boundary node and element generators

– Converters of surface boundaries and elements from PATRAN

and SolidWorks formats to BEM package formats

– Solvers (vector potential and fields)

– Evaluators of the solution at exterior points of object

– Visualization tools for the solution using VisIt Plot and TecPlot

– Over 50K lines of code

– All double precision although code is dependent on a single

kind parameter that, when modified and the code recompiled,

will change the precision

22 8/11/2011

The Algorithm Examined

• The method of solution is to integrate

singular Green's functions over the

boundary using the boundary conditions to

create a potentially large linear system of

equations.

8/11/2011 23

Uncertainties To Be Measured

• Uncertainty measures to be studied with

the Test Harness
• What is the uncertainty in the solution to changes

in boundary conditions?

• How sensitive are the results to changes in the

quadrature points and weights?

• The boundary conditions for real problems are

likely only known to 3 digits, if that

8/11/2011 24

• Solve the vector potential Laplace

equation (the A equation) for the following

objects:
• A sphere with Neumann boundary conditions (the

solution is the magnetic potential on the boundary)

• A annular cylinder with mixed boundary conditions

(the solution is a mixture of the vector potential and

the tangent of the magnetic field on the boundary)

• A torus with Dirichlet boundary conditions (the

solution is the tangent of the magnetic field on the

boundary)
8/11/2011 25

Test Problems

Perturbation Introduced

• Change the boundary conditions by

introducing random perturbations relative

to the boundary conditions themselves.

• The sizes of the changes:
• 100 units in last place for double precision

• 1 unit in the last place of single precision

• 10,000 units in the last place of single precision

• 100,000 units in the last place of single precision

26 8/11/2011

Perturbations Tested

• Change the Gauss points and weights by

introducing random perturbations of these

values relative to themselves;
– Use the same sizes as listed on previous slide

• Measure the maximum element norm of

the difference relative to the maximum

element in the solution (a TH supplied

computation)

8/11/2011 27

8/11/2011 28

Results: Sphere BCs

8/11/2011 29

Log10 Of
 Change In
 Solution
 Vector

Log10 of Magnitude Of Perturbation

Sphere With Boundary Condition Perturbations

Data

Straight Line

Results: Annular Cylinder BCs

8/11/2011 30

Log10 Of
 Change In
 Solution
 Vector

Log10 of Magnitude Of Perturbation

Annular Cylinder With Boundary Condition Perturbations

Data

Straight Line

Results: Torus BCs

8/11/2011 31

Log10 Of
 Change In
 Solution
 Vector

Log10 of Magnitude Of Perturbation

Torus With Boundary Condition Perturbations

Data

Straight Line

Results: Torus Quad

8/11/2011 32

Log10 Of
 Change In
 Solution
 Vector

Log10 of Magnitude Of Perturbation

Torus With Quadrature Data Perturbations

Data

Straight Line

Results: Annular Cylinder Quad

8/11/2011 33

Log10 Of
 Change In
 Solution
 Vector

Log10 of Magnitude Of Perturbation

Annular Cylinder With Quadrature Data Perturbations

Data

Straight Line

Conclusions Of Case Study

• Analysis clearly shows the solutions will depend

on the condition number of the generated linear

system
– For these problems, conditions numbers for sphere, torus, and

annular cylinder are roughly 150, 200, 6000

• The case study confirms this behavior
– The condition number is computed and printed

• Experiments with objects that are:
» More complicated topology

» Sharp edges and corners

• Are needed

 34 8/11/2011

Summary

• The test harness has made it easy to measure

the uncertainty in the solution under changes to

various input and other critical values
• The case study used problems with known solutions

• These known solutions were not used in the measurements

• The purpose of the experiments was to

formulate a computable measure to indicate the

sensitivity of the solution to data uncertainty.
• So far, the linear system condition number seems to be an

indicator of this sensitivity

• More study and analysis is needed

8/11/2011 35

Thank You

• Brian T. Smith, N21 Inc.
• 22 Crystal Mountain Rd

• Angel Fire, NM 87710-1668

• Email: carbess@swcp.com

8/11/2011 36

mailto:carbess@swcp.com

8/11/2011 37

Analyzer Information

• Information compiled by the Analyzer
• Usual symbol table

– All identifiers (also labels) and their attributes

– Locates declaration/use points of all identifiers/labels

» Future: locate where names are actual arguments

• Location of certain TH-related code points
– All entry points into all procedures

– All STOP actions (implicit or explicit statement) except
run-time errors and exceptions

– All RETURN actions (implicit or explicit statement)

– All READ/WRITE/PRINT statements

» Separate list for input and output statements

8/11/2011 38

Analyzer Information Cont’d

– Complete interfaces
• For external/internal/module procedures

• Creates reference/definition information for all
dummy arguments that have no explicit intent

– Compares interfaces (explicit and generated)
with actual references

• Flags locations where interface and reference are
inconsistent

– Will implement an option to defeat this check by
procedure name (e.g.: MPI references violate many
Fortran rules, unless a tailored MPI module interface is
provided)

8/11/2011 39

Analyzer Information Cont’d

– Encodes all literals as identifiers
– Locates where they are used to facilitate replacement

with named constants

– Replaces labeled action statements (except

labeled DO terminations) with unlabeled

action statements
– The replacement is a labeled CONTINUE statement

followed by the original statement unlabeled

– Necessary to insert TH probes at arbitrary points

8/11/2011 40

Capabilities Of The New Tools

• A tool to create symbol tables for a Fortran prog.

• A tool to insert include lines in a Fortran application

code that specify data probes in default places

• A tool to build that installs in a user-specified list of

procedures default data monitoring for two cases:
• No application code variables monitored but procedure trace and

performance data generated

• All application data ―external‖ to a procedure monitored

– ―external‖ means:

» Dummy arguments

» Variables in common

» Variables accessed from a module

» (Future) data read or written from a file

8/11/2011 41

TH Characteristics

• Allows the data monitoring to be selective

– The user selects which variables in which routines are monitored

• Allows for ―reduction tests‖ to avoid large ―check-data‖ files

• Examples ―reduction‖ tests: array norms, key array elements,

checking frequency

• Allows comparisons of past and current monitored values to be

– Identity

– ―near-identity‖ with user-settable tolerances, both

absolute and relative

– A combination of the last two tolerances

– By element or by norm

– Differences completely ignored

8/11/2011 42

Mechanism – Installing the

Harness In Application Codes

• Required changes to application code files
• Add ―INCLUDE‖ lines, referencing the test harness

module or compile the test harness module before

any application code is modified

• To the original source code

» Insert typically 3 or 4 ―INCLUDE‖ lines per subprogram

to be monitored

• Create an input file for the builder tool
• For each monitored subprogram

– A list of variables to be monitored (possible to have none)

8/11/2011 43

An Example – A Main Program

Program main

 … Specifications

 … Executables

End program main

Program mine

 INCLUDE “use_testing_harness_main”

 … Specifications

 INCLUDE “initialize_testing_harness‖

 … Executables

 INCLUDE “write_output_and_finalize_all.mine”

 ….

 INCLUDE “perturb.bcs”

End program mine

Original Application Code Application Code With TH Installed

Plus similar INCLUDE lines for each:

• STOP statement monitored

• Selected probe point monitored

8/11/2011 44

Builder Input – An Example
Input.f90 ! Input source file

Output.f90 ! Output source file

HARNESS_TEMPLATES ! Directory

APPL_TH_INCLUDES ! Dir. Of Generated INCLUDE files

APPL_EM_INCLUDES ! Dir of INCLUDE files for Inactive TH

#harness# th

 #hvar# debug_unit 6 ! Unit for debug output

 …

#main# main

 #output#

 #mvars# a ―real(8)::‖ … abs_tol=10.0

 #ptbvars# a ―real(8)::‖ … value=10.0 how=rndm_rel perturber=my_code

8/11/2011 45

Types Of Application Subprograms

• Currently, any Fortran standard-compliant code

(Fortran 77/90/95/03)
• All inserted code is also F90-compliant

• Dependencies on the language are modest but vary with the

tool

• Plans to support C for:
• Builder and includer tools using C template codes

– Test harness templates can readily be rewritten in C

• Analysis tools currently assume Fortran application code

– Tools are designed to facilitate replacement of specific software

pieces to support C or other languages

8/11/2011 46

The TH Provides

• Storage size information of the data being

monitored (per subprogram monitored)
• Shows what routines are creating large amounts of data

• Provides timing performance per subprogram
• Indicates code performance

• Provides performance information of the test

harness itself
• Performance cost to create the data

• Performance cost to read past data and compare with current

values with past values

8/11/2011 47

Extensibility

• The generated ―INCLUDE‖ files are visible
• Can be modified easily by hand

• The data comparison and timer modules are

visible
• Data comparison module can be enhanced to:

– Check identity/near-identity for the non-default, non-intrinsic

types

– Perform special data consistency tests on particular variables,

like arrays and structures

• Timer module can be modified or enhanced to

– Provide different timers

– To modify what is measured

8/11/2011 48

Experience To Date

• The development and debugging of the builder

tool

• Modernization of 5 application codes and

checking the results

• Debugging a parallel MPI code using finite

boundary element method
• Decided first to serialize the code and debug the serial code

with the test harness

» This worked and found problems

• Work in progress to create a version of the test harness that

works directly on parallel code

8/11/2011 49

Code Maintenance And

Development Over The Grid

• Test harness supports:
• Relative and absolute comparison criteria with

readily specified tolerances

• Comparisons of aggregate structures like arrays
and derived types

• Frequency of comparisons specifiable

• Test harness always installed in the application
– The application code can be compiled, disabling the test

harness, resulting in the original code

• Easy replacement of comparison modules
– Easy to change from looking for computational difference

to evaluating the accuracy of the results

8/11/2011 50

Vision Of Usage

• In the grid environment:
• Easy retesting of the code on ―new‖ machines

• Easy comparisons of ―new‖ code with ―old‖ code

– Designed to facilitate regression testing over

the grid on a regular basis

– Permits the use of new evaluation techniques

that answer questions like:
– Are the current results and past results ―equivalent‖?

» Do they solve the same problem?

» Are the results ―numerically‖ indistinguishable?

8/11/2011 51

Planned Enhancements

• Integration of HDF5 portable exchange
format

• Modification to support SPMD MPI codes

• Specification of how to do this for C codes
• Involves rewriting the include templates in C

• Involves creating a version of the builder tool that
creates C #INCLUDE files

• C codes involve arrays of ―unknown‖ extents
– Use the same approach as used for Fortran assumed-

size arrays – the array variable to be monitored may
require its extents to be specified in checking procedures

8/11/2011 52

Planned Enhancements

• Reimplementation of parts of the Analyzer

and its related tools
• Redesign to use an API to access symbol table

and other related information

• This will facilitate replacement of the reference

version of the Analyzer with compiler-specific

version using vendor-offered interfaces satisfying

the API

8/11/2011 53

Summary

• Test harness to monitor program
enhancement

• Avoids tedious, error-prone operations of
testing and checking

• Extensible and flexible tool

• Tracks enhancements in code
• Useful for porting, code modernization

• The tool supports application and library software
development

8/11/2011 54

Documentation

• Documentation:
• 2-Page Summary

• Getting Started instructions

• Overview:

» Creating A Test Data Environment To Detect Errors

In The Code Conversion Process, Version 0.6,

November, 2005, approx. 14 pages, Brian T. Smith

• User’s Guide:

» The Test Harness User’s Guide, Version 0.6,

November, 2005, approx. 19 pages, Brian T. Smith

8/11/2011 55

Implementations

• CD with installation tests and 3 sample

applications of the test harness (code

modernization)

• Installations fully tested and available for:
• Linux X86 for Nag f95, g95, and pgf90

• Linux EM64T for NAG f95 and g95

• SUSE and AIX for xlf95

• Cygwin for NAG f95, g95, CVF, Lahey

• XP for CVF and Lahey/Fujitsu

8/11/2011 56

Contact Information

• Brian T. Smith, N21 Inc.
• 22 Crystal Mountain Rd

• Angel Fire, NM 87710-1668

• Email: carbess@swcp.com

mailto:carbess@swcp.com

