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What is data assimilation? 

Aug. 4, 2011. IFIP UQ Workshop, Boulder, CO 

The fusion of information from: 
1. prior knowledge, 
2. imperfect model predictions, and  
3. sparse and noisy data,  
to obtain a consistent description of the state of a physical system, 
such as the atmosphere. 

Lars Isaksen (http://www.ecmwf.int) 



Source of information #1: The prior encapsulates our
current knowledge of the state

I The background (prior) probability density: Pb(x)

I The current best estimate: apriori (background) state xb.
I Typical assumption on random background errors

εb = xb − S(xtrue) ∈ N (0,B) .

I With many nonlinear models the normality assumption is difficult
to justify, but is nevertheless widely used because of its
convenience.

Data assimilation. General view of data assimilation. Sources of information [7/21]
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Source of information #2: The model encapsulates our
knowledge about physical and chemical laws that
govern the evolution of the system

I The model evolves an initial state x0 ∈ Rn to future times

xi =Mt0→ti (x0) .

I Typical size of chemical transport models: n ∈ O
(
107) variables.

I The model is imperfect

S
(
xtrue

i
)

=Mti−1→ti · S
(
xtrue

i−1
)
− ηi ,

where ηi is the model error in step i .

Data assimilation. General view of data assimilation. Sources of information [8/21]
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Source of information #3: The observations are
sparse and noisy snapshots of reality

I Measurements yi ∈ Rm (m� n) taken at times t1, . . . , tN

yi = Ht (xtrue
i
)
− εinstrument

i = H
(
S(xtrue

i )
)
− εobs

i , i = 1, · · · ,N .

I Observation operators
I Ht : physical space→ observation space, while
I H : the model space→ observation space.

I The observation error

εobs
i = εinstrument

i︸ ︷︷ ︸
instrument error

+H
(
S(xtrue

i )
)
−Ht (xtrue

i
)︸ ︷︷ ︸

representativeness error

I Typical assumptions:

εobs
i ∈ N (0,Ri) ; εobs

i , εobs
j independent for ti 6= tj .

Data assimilation. General view of data assimilation. Sources of information [9/21]
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Result of data assimilation: The analysis encapsulates
our enhanced knowledge of the state

I The analysis (posterior) probability density Pa(x):

Bayes: Pa(x) = P(x|y) =
P(y|x) · Pb(x)

P(y)
.

I The best state estimate xa is called the aposteriori, or the analysis.
I Analysis estimation errors εa = xa − S(xtrue) characterized by

I analysis mean error (bias) βa = Ea [εa]
I analysis error covariance matrix

A = Ea
[
(εa − βa) (εa − βa)T

]
∈ Rn×n

I In the Gaussian, linear case, Bayes posterior admits an analytical
solution by Kalman filter formulas

Data assimilation. General view of data assimilation. Sources of information [10/21]
Aug. 4, 2011. IFIP UQ Workshop, Boulder, CO. (http://csl.cs.vt.edu)



Extended Kalman filter
I The observations are considered successively at times t1, · · · , tN .
I The background state at ti given by the model forecast:

xb
i ≡ xf

i =Mti−1→ti · xa
i−1 .

I Model is imperfect, but is assumed unbiased

ηi ∈ N (0,Qi)

I Model error ηi and solution error εa
i−1 are assumed independent;

solution error small, propagated by linearized model M =M′(x)

O(n3) : Bi ≡ Pf
i = Mti−1→ti Pa

i−1 MT
ti→ti−1

+ Qi .

I EKF analysis uses Hi = H′(xf
i ):

O(nm) : xa
i = xf

i + Ki
(
yi −H(xf

i )
)

O(nm2 + n2m + m3) : Ki = Pf
i HT

i
(
Hi Pf

i HT
i + Ri

)−1

O(n2m + n3) : Ai ≡ Pa
i = (I− Ki Hi) Pf

i .

Data assimilation. The Bayesian framework. [11/21]
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Practical Kalman filter methods
I EKF is not practical for very large systems
I Suboptimal KF approximate the covariance matrices e.g.,

B(`),(k) = σ(`) σ(k) exp
(

distance{gridpoint(`), gridpoint(k)}2/L2
)

I Ensemble Kalman filters (EnKF) use a Monte-Carlo approach

xf
i [e] = Mti−1→ti

(
xa

i−1[e]
)

+ ηi [e]︸︷︷︸
model error

, e = 1, . . . ,E

xa
i [e] = xf

i [e] + Ki
(

yi + εobs
i [e]−Hi(xf

i [e])
)
, e = 1, . . . ,E .

I Error covariances Pf
i , Pa

i estimated from statistical samples
I EnKF issues: rank-deficiency of the estimated Pf

i
I EnKF strengths: capture non-linear dynamics, doesn’t need TLM,

ADJ, accounts for model errors, almost ideally parallelizable

Data assimilation. The Bayesian framework. [12/21]
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Maximum aposteriori estimator
Maximum aposteriori estimator (MAP) defined by

xa = arg max
x
Pa(x) = arg min

x
J (x) , J (x) = − ln Pa(x) .

Using Bayes and assumptions for background, observation errors:

J (x) = − ln Pa(x) = − lnPb (x)− lnP (y|x) + const

=̇
1
2
(
x− xb)T B−1 (x− xb)+

1
2

(H (x)− y)T R−1 (H (x)− y)

Optimization by gradient-based numerical procedure

∇xJ (xa) = B−1 (xa − xb)+ HT R (H(xa)− y) ; H = H(xb) .

Hessian of cost function approximates inverse analysis covariance

∇2
x,xJ = B−1 + HT R−1 H ≈ A−1 .

Data assimilation. The Bayesian framework. [13/21]
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Four dimensional variational data assimilation
(4D-Var) I

I All observations at all times t1, · · · , tN are considered
simultaneously

I The control variables (parameters p, initial conditions x0,
boundary conditions, etc) uniquely determine the state of the
system at all future times

I 4D-Var MAP estimate via model-constrained optimization problem

J (x0) =
1
2
∥∥x0 − xb

0
∥∥2

B−1
0

+
1
2

N∑
i=1

‖H(xi)− yi‖2R−1
i

xa
0 = arg minJ (x0)

subject to: xi =Mt0→ti (x0) , i = 1, · · · ,N

I Formulation can be easily extended to other model parameters

Data assimilation. The Bayesian framework. [14/21]
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Four dimensional variational data assimilation
(4D-Var) II

I The large scale optimization problem is solved in a reduced space
using a gradient-based technique.

I The 4D-Var gradient reads

∇Jx0 (x0) = B−1
0

(
x0 − xb

0
)

+
N∑

i=1

(
∂xi

∂x0

)T

HT
i R−1

i (H(xi)− yi)

I Needs linearized observation operators Hi = H′(xi)

I Needs the transposed sensitivity matrix (∂xi/∂x0)T ∈ Rn×n

I Adjoint models efficiently compute the transposed sensitivity
matrix times vector products

I The construction of an adjoint model is a nontrivial task.

Data assimilation. The Bayesian framework. [15/21]
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Correct models of background errors are of great 
importance for data assimilation 

• Background error representation determines the spread of information, 
and impacts the assimilation results 

• Needs: high rank, capture dynamic dependencies, efficient computations 

• Traditionally estimated empirically (NMC, Hollingsworth-Lonnberg) 

1.  Tensor products of 1d 
correlations, decreasing with 
distance (Singh et al, 2010) 

2.  Multilateral AR model of 
background errors based on 
“monotonic TLM discretizations” 
(Constantinescu et al 2007) 

3.  Hybrid methods in the context 
of 4D-Var (Cheng et al, 2007) 

[Constantinescu and Sandu, 2007] 
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What is the effect of mis-specification of inputs?

(Daescu, 2008) Consider a verification functional Ψ(xa
v ) defined on the

optimal solution at a future time tv . Ψ is a measure of the forecast error.
What is the impact of small errors in the specification of covariances,
background, and observation data?

∇yi Ψ = R−1
i HiMt0→ti

((
∇2

x0,x0
J
)−1
∇x0Ψ

)
∇Ri (:)Ψ =

(
R−1

i (H(xa
i )− yi)

)
⊗∇yi Ψ

∇xbΨ = B−1
0

((
∇2

x0,x0
J
)−1
∇x0Ψ

)
∇B0(:)Ψ =

(
B−1

0 (xa
0 − xb

0)
)
⊗∇xbΨ

Data assimilation. The Bayesian framework. [21/25]
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General framework for sensitivity analysis
Forward model equations link parameters and solutions:

F(x, θ) = 0 ∈ HF . HF = model constraint space, Hilbert: 〈·, ·〉HF

x ∈ Hx . Hx= model state space,Hilbert: 〈 ·, · 〉Hx
,

θ ∈ Hθ . Hθ= parameter space,Hilbert: 〈 ·, · 〉Hθ
.

The response functional (QoI) associates a real value to each state

J (x) : Hx −→ R
(

e.g., J (x) =
1
2
‖H(x)− y‖2R−1

)
Assumptions:

1. F , J are continuously Frèchet differentiable.
2. Fx has a continuous linear inverse mapping. By IFT a Frèchet

differentiable model solution operator x =M(θ) exists locally

M : Hθ → Hx ; x =M(θ) ; M′(θ) = −F−1
x (x, θ) · Fθ(x, θ) .

Sensitivity analysis. General framework. Formulation [1/9]
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Formulation of the inverse problem as a
model-constrained optimization problem
Find the optimal vector of parameters θopt such that:

θ∗ = arg min
θ
J (x)

subject to F(x, θ) = 0 .

Comments.
1. The cost function depends implicitly on the parameters:

J (x) = J (M(θ)) = (J ◦M) (θ) .

2. Gradient-based optimization techniques require

∇θJ =M′∗(θ) · ∇xJ

3. Difficulty: model solution operator is only defined implicitly.

Sensitivity analysis. General framework. Formulation of the inverse problem [2/9]
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Direct (forward) vs. adjoint sensitivity analysis
1. Tangent linear model is obtained by Frèchet differentiation

(TLM) : Fθ(θ,x) · δθ + Fx(θ,x) · δx = 0 ∈ HF .

δJ = 〈∇xJ , δx 〉Hx
= 〈∇θJ , δθ 〉Hθ

.

Comment. ∇xJ by direct differentiation. One TLM solution
provides one inner product . To find the entire gradient ∇θJ ...

2. Adjoint model obtained using duality:

(λ ∈ H∗F ≡ HF ) ⇔ 〈λ,Fx · δx 〉HF
+ 〈λ,Fθ · δθ 〉HF

= 0 ∈ R
(by adjoint) ⇔ 〈F∗x · λ, δx 〉Hx

+ 〈 F∗θ · λ, δθ 〉Hθ
= 0 ∈ R .

ADJ : F∗x · λ = −∇xJ (x) .

〈∇xJ (x), δx 〉Hx
= 〈 (Fθ)∗ · λ, δθ 〉Hθ

= 〈∇θJ , δθ 〉Hθ
= δJ .

Comment. Adjoint model does not depend on the particular
perturbations δθ, δx, and needs to be solved only once.

Sensitivity analysis. General framework. Adjoint sensitivity analysis [5/10]
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Continuous and discrete adjoints of mass balance 
equations lead to different computational models  
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Discrete adjoints of advection numerical schemes can 
become inconsistent with the adjoint PDE 

Change of forward scheme pattern: 
• Change of upwinding 
• Sources/sinks  
• Inflow boundaries scheme 
Example: 3rd order upwind FD 
 [Liu and Sandu, 2005] 

Active forward limiters  

act as pseudo-sources in adjoint 

Example: vminmod 
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discretization  
change 

upwind direction  
change 



Discrete Runge-Kutta adjoints can be regarded as 
“numerical methods” applied to the adjoint ODE 



n  n1   i

i1

s



 i  h JT Yi  bi 
n1  a j,i

j

j1

s
















y
n1  yn  h bif Y

i 
i1

s

 ,

Y
i  yn  h ai,j f Y

j 
i1

s



RK Method 

Discrete RK Adjoint 
[Hager, 2000] 
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Discrete Runge-Kutta adjoints: error analysis 

Local error analysis: The discrete adjoint of RK method of order p is an 
order p discretization of the adjoint equation. [Sandu, 2005] . This: 
- works for both explicit and implicit methods 
- true for arbitrary orders p  

Aug. 4, 2011. IFIP UQ Workshop, Boulder, CO 

Global error analysis:  The discrete adjoint (of a RK method convergent 
with order p) converges with order p to the solution of the adjoint 
ODE. [Sandu, 2005] The analysis accounts for: 
1. the truncation error at each step, and 
2. the different trajectories about which the continuous and the discrete 

adjoints are defined 

Stiff case: Consider a stiffly accurate Runge Kutta method of order p 
with invertible coefficient matrix A. The discrete adjoint provides: 

1. an order p discretization of the adjoint of nonstiff variable 

2. an order min(p,q+1,r+1) of the adjoint of stiff variable 

[Sandu, 2005] 



Properties of discrete adjoint LMM 

1. For fixed step sizes  

• the discrete adjoint starting and ending steps, in 

general, are not consistent approximations of the 

adjoint ODE 

• the adjoint LMM is (at least) first order 

consistent with the adjoint ODE 

2. For variable step sizes the adjoint LMM is not a 

consistent discretization of the adjoint ODE 

3. The discrete adjoint variable at the initial time is 

an order p approximation of the continuous adjoint, 

where p is the order of the (forward) LMM method. 

[Sandu, 2007] 
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Uncertainty quantification using polynomial chaos and
the STEM model

Ground emissions NOx (NO, NO2) ±20%
Ground emissions AVOC (HCHO, ALK , OLE, ARO) ±50%
Ground emissions BVOC (ISOPRENE, TERPENE, ETHENE) ±40%
Deposition velocity O3 ±50%
Deposition velocity NO2 ±50%
West Dirichlet B.C. O3 ±5%
West Dirichlet B.C. PAN ±5%

O3 mean (48h) O3 standard dev. (48h)

Data assimilation. The Bayesian framework. UQ/UA for STEM [23/25]
Aug. 4, 2011. IFIP UQ Workshop, Boulder, CO. (http://csl.cs.vt.edu)



Uncertainty apportionment with the STEM model

Figure: Top: New York. Bottom: Boston. 48 hrs ozone mean, standard devia-
tion, and uncertainty (variance) apportionment.

Data assimilation. The Bayesian framework. UQ/UA for STEM [24/25]
Aug. 4, 2011. IFIP UQ Workshop, Boulder, CO. (http://csl.cs.vt.edu)



Quantification of the probability of non-compliance
with the NAAQS ozone maximum admissible levels

55 60 65 70 75 80 85 90 95 100 105
0

0.01

0.02
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Concentration [ ppbv ]

P
D

F

Figure: Boston 8hrs average ozone PDF shows a 68% probability of exceed-
ing the maximum admissible level of 75 ppbv.

Data assimilation. The Bayesian framework. UQ/UA for STEM [25/25]
Aug. 4, 2011. IFIP UQ Workshop, Boulder, CO. (http://csl.cs.vt.edu)



Ensemble-based chemical data assimilation is an 
alternative to variational techniques 

Optimal analysis state 
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Ensemble 

Data  
Assimilation 

Targeted  
Observ. 

Improved: 
• forecasts 
• science 
• field experiment design 
• models  
• emission estimates 
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The Ensemble Kalman Filter (EnKF) popular in NWP 
but not extensively used before with CTMs 

Specify initial ensemble (sample B) 

Covariance inflation: Prevents filter 
divergence (additive, multiplicative, 
model-specific) 

Covariance localization (limit long-
distance spurious correlations) 

Correction localization (limit increments 
away from observations) 

Ozonesonde S2 (18 EDT, July 20, 2004) [Constantinescu et al., 2007] 
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Ground level ozone at 2pm EDT, July 20, 2004, better 
matches observations after LEnKF data assimilation 

Forecast (R2=0.24/0.28) Analysis (R2=0.88/0.32) 

Observations: circles, color coded by O3 mixing ratio 
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The use of adjoints in large scale simulations: 
atmospheric chemical transport models 

Optimal analysis state 

Chemical kinetics 

Aerosols 

CTM 

Transport 
Meteorology 

Emissions 

Observations 
4D-Var 
Data  

Assimilation 

Targeted  
Observ. 

Improved: 
• forecasts 
• science 
• field experiment design 
• models  
• emission estimates 
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Adjoint sensitivity analysis of non-attainment 
metrics can help guide policy decisions 

Estimated contributions by state 

to violating U.S. ozone NAAQS 

in July 2004 

[Hakami et al., 2005] 
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STEM: Assimilation adjusts O3 predictions considerably 
at 4pm EDT on July 20, 2004  

Observations: circles, color coded by O3 mixing ratio 

Ground O3 (forecast) Ground O3 (analysis) 

[Chai et al., 2006] 
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Assimilation of elevated observations for July 20, 2004 

NOAA P3 flight observations 
Ozonesonde observations 

(Rhode Island) 
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The inversion procedure can be extended to 
emissions, boundary conditions, etc.  

NO2  

emission  

corrections 

Texas: 4am CST July 16 to 8pm CST on July 17, 2004.  

HCHO  

emission  

corrections 

O3  

AirNow 

NO2  

Schiamacy 
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[Zhang, Sandu et al., 2006] 



Smallest Hessian eigenvalues (vectors) approximate 
the principal aposteriori error components 

(a) 3D view (5ppb) 

(b) East view 

(c) Top view 




y 0 ,y 0
2  1  cov yopt 
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[Sandu et. al., 2007] 



Assimilation of TES ozone column observations, 
August 2006. Lobatto-IIIC integrates stiff chemistry. 

Aug. 4, 2011. IFIP UQ Workshop, Boulder, CO 

TES is one of four instruments on the 

NASA EOS Aura platform, launched July 

14 2004 



Quality of TES ozone column data assimilation results 
for several methods (August 1-15, 2006) 
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[Singh, Sandu et. al., 2010 



Dynamic integration of chemical data and atmospheric 
models is an important, growing field 

 

 the tools needed for 4D-Var chemical data assimilation 
are in place: 
 (adjoints for stiff systems, aerosols, transport; 

singular vectors, parallelization and multi-level 
checkpointing schemes, models of background 
errors) 

 all algorithms are on a solid theoretical basis 
 the ensemble filter methods show promise 
 STEM, CMAQ, GEOS-CHEM have been endowed with 

data assimilation capabilities 
 the tool strengths have been demonstrated using real 

(field campaign) data; ambitious science projects are 
ongoing 
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