Uncertainty Reduction in Atmospheric Composition Models by Chemical Data Assimilation

Adrian Sandu

Computational Science Laboratory Virginia Polytechnic Institute and State University

Aug. 4, 2011. IFIP UQ Workshop, Boulder, CO

Information feedback loops between CTMs and observations: data assimilation and targeted meas.

What is data assimilation?

- The fusion of information from:
- 1. prior knowledge,
- 2. imperfect model predictions, and
- 3. sparse and noisy data,

to obtain a consistent description of the state of a physical system, such as the atmosphere.

Lars Isaksen (http://www.ecmwf.int)

Aug. 4, 2011. IFIP UQ Workshop, Boulder, CO

Source of information #1: The prior encapsulates our *current knowledge* of the state

- The background (prior) probability density: $\mathcal{P}^{b}(\boldsymbol{x})$
- ► The current best estimate: apriori (background) state **x**^b.
- Typical assumption on random background errors

$$arepsilon^{\mathrm{b}} = \mathbf{X}^{\mathrm{b}} - \mathcal{S}(\mathbf{X}^{\mathrm{true}}) \in \mathcal{N}\left(\mathbf{0}, \mathbf{B}
ight)$$
 .

With many nonlinear models the normality assumption is difficult to justify, but is nevertheless widely used because of its convenience.

Source of information #2: The model encapsulates our knowledge about physical and chemical laws that govern the evolution of the system

▶ The model evolves an initial state $\mathbf{x}_0 \in \mathbb{R}^n$ to future times

$$\mathbf{x}_{i} = \mathcal{M}_{t_{0} \rightarrow t_{i}} (\mathbf{x}_{0})$$
.

- ▶ Typical size of chemical transport models: $n \in O(10^7)$ variables.
- The model is imperfect

$$\mathcal{S}\left(\mathbf{x}_{i}^{\text{true}}\right) = \mathcal{M}_{t_{i-1} \to t_{i}} \cdot \mathcal{S}\left(\mathbf{x}_{i-1}^{\text{true}}\right) - \eta_{i},$$

where η_i is the model error in step *i*.

Source of information #3: The observations are sparse and noisy snapshots of reality

• Measurements $\mathbf{y}_i \in \mathbb{R}^m$ ($m \ll n$) taken at times t_1, \ldots, t_N

 $\mathbf{y}_{i} = \mathcal{H}^{t}\left(\mathbf{x}_{i}^{\text{true}}\right) - \varepsilon_{i}^{\text{instrument}} = \mathcal{H}\left(\mathcal{S}(\mathbf{x}_{i}^{\text{true}})\right) - \varepsilon_{i}^{\text{obs}}, \quad i = 1, \cdots, N.$

- Observation operators
 - \mathcal{H}^t : physical space \rightarrow observation space, while
 - \mathcal{H} : the model space \rightarrow observation space.
- The observation error

$$\varepsilon_{i}^{\text{obs}} = \underbrace{\varepsilon_{i}^{\text{instrument}}}_{\text{instrument error}} + \underbrace{\mathcal{H}\left(\mathcal{S}(\mathbf{x}_{i}^{\text{true}})\right) - \mathcal{H}^{\text{t}}\left(\mathbf{x}_{i}^{\text{true}}\right)}_{\text{representativeness error}}$$

Typical assumptions:

$$\varepsilon_{i}^{\text{obs}} \in \mathcal{N}(\mathbf{0}, \mathbf{R}_{i})$$
; $\varepsilon_{i}^{\text{obs}}$, $\varepsilon_{j}^{\text{obs}}$ independent for $t_{i} \neq t_{j}$.

Data assimilation. General view of data assimilation. Sources of information [9/21] Aug. 4, 2011. IFIP UQ Workshop, Boulder, CO. (http://csl.cs.vt.edu)

Result of data assimilation: The analysis encapsulates our *enhanced knowledge* of the state

► The analysis (posterior) probability density $\mathcal{P}^{a}(\mathbf{x})$:

Bayes:
$$\mathcal{P}^{a}(\mathbf{x}) = \mathcal{P}(\mathbf{x}|\mathbf{y}) = \frac{\mathcal{P}(\mathbf{y}|\mathbf{x}) \cdot \mathcal{P}^{b}(\mathbf{x})}{\mathcal{P}(\mathbf{y})}$$

- ► The best state estimate **x**^a is called the aposteriori, or the *analysis*.
- Analysis estimation errors $\varepsilon^{a} = \mathbf{x}^{a} \mathcal{S}(\mathbf{x}^{true})$ characterized by
 - analysis mean error (bias) $\beta^{a} = \mathbb{E}^{a} [\varepsilon^{a}]$
 - analysis error covariance matrix

$$\mathbf{A} = \mathbb{E}^{\mathrm{a}}\left[\left(\varepsilon^{\mathrm{a}} - \beta^{\mathrm{a}} \right) \left(\varepsilon^{\mathrm{a}} - \beta^{\mathrm{a}} \right)^{\mathsf{T}} \right] \in \mathbb{R}^{n \times n}$$

 In the Gaussian, linear case, Bayes posterior admits an analytical solution by Kalman filter formulas

Extended Kalman filter

- The observations are considered successively at times t_1, \dots, t_N .
- ► The background state at *t_i* given by the model forecast:

$$\mathbf{x}_{i}^{\mathrm{b}} \equiv \mathbf{x}_{i}^{\mathrm{f}} = \mathcal{M}_{t_{i-1} \to t_{i}} \cdot \mathbf{x}_{i-1}^{\mathrm{a}}$$

Model is imperfect, but is assumed unbiased

$$\eta_i \in \mathcal{N}(\mathbf{0}, \mathbf{Q}_i)$$

 Model error η_i and solution error ε^a_{i-1} are assumed independent; solution error small, propagated by linearized model M = M'(x)

$$\mathcal{O}(n^3): \quad \mathbf{B}_i \equiv \mathbf{P}_i^{\mathrm{f}} = \mathbf{M}_{t_{i-1} \rightarrow t_i} \, \mathbf{P}_{i-1}^{\mathrm{a}} \, \mathbf{M}_{t_i \rightarrow t_{i-1}}^T + \mathbf{Q}_i \, .$$

• EKF analysis uses $\mathbf{H}_i = \mathcal{H}'(\mathbf{x}_i^{\mathrm{f}})$:

$$\begin{aligned} \mathcal{O}(nm) : & \mathbf{x}_i^{\mathrm{a}} = \mathbf{x}_i^{\mathrm{f}} + \mathbf{K}_i \, \left(\mathbf{y}_i - \mathcal{H}(\mathbf{x}_i^{\mathrm{f}}) \right) \\ \mathcal{O}(nm^2 + n^2m + m^3) : & \mathbf{K}_i = \mathbf{P}_i^{\mathrm{f}} \mathbf{H}_i^{\mathrm{T}} \left(\mathbf{H}_i \, \mathbf{P}_i^{\mathrm{f}} \, \mathbf{H}_i^{\mathrm{T}} + \mathbf{R}_i \right)^{-1} \\ \mathcal{O}(n^2m + n^3) : & \mathbf{A}_i \equiv \mathbf{P}_i^{\mathrm{a}} = \left(\mathbf{I} - \mathbf{K}_i \, \mathbf{H}_i \right) \, \mathbf{P}_i^{\mathrm{f}}. \end{aligned}$$

Data assimilation. The Bayesian framework. [11/21] Aug. 4, 2011. IFIP UQ Workshop, Boulder, CO. (http://csl.cs.vt.edu)

Practical Kalman filter methods

- EKF is not practical for very large systems
- Suboptimal KF approximate the covariance matrices e.g.,

$$\mathbf{B}_{(\ell),(k)} = \sigma_{(\ell)} \, \sigma_{(k)} \, \exp\left(\operatorname{distance}\{\operatorname{gridpoint}(\ell), \operatorname{gridpoint}(k)\}^2 / L^2\right)$$

Ensemble Kalman filters (EnKF) use a Monte-Carlo approach

$$\mathbf{x}_{i}^{\mathrm{f}}[\boldsymbol{e}] = \mathcal{M}_{t_{i-1} \to t_{i}} \left(\mathbf{x}_{i-1}^{\mathrm{a}}[\boldsymbol{e}] \right) + \underbrace{\eta_{i}[\boldsymbol{e}]}_{\mathrm{model \, error}}, \quad \boldsymbol{e} = 1, \dots, \boldsymbol{E}$$

$$\mathbf{x}_{i}^{a}[\boldsymbol{e}] = \mathbf{x}_{i}^{f}[\boldsymbol{e}] + \mathbf{K}_{i}\left(\mathbf{y}_{i} + \varepsilon_{i}^{\text{obs}}[\boldsymbol{e}] - \mathcal{H}_{i}(\mathbf{x}_{i}^{f}[\boldsymbol{e}])\right), \quad \boldsymbol{e} = 1, \dots, \boldsymbol{E}.$$

- Error covariances \mathbf{P}_{i}^{f} , \mathbf{P}_{i}^{a} estimated from statistical samples
- EnKF issues: rank-deficiency of the estimated P^f_i
- EnKF strengths: capture non-linear dynamics, doesn't need TLM, ADJ, accounts for model errors, almost ideally parallelizable

Maximum aposteriori estimator

Maximum aposteriori estimator (MAP) defined by

$$\mathbf{x}^{a} = \arg \max_{\mathbf{x}} \, \mathcal{P}^{a}(\mathbf{x}) = \arg \min_{\mathbf{x}} \, \mathcal{J}(\mathbf{x}) \,, \quad \mathcal{J}(\mathbf{x}) = - \ln \, \mathcal{P}^{a}(\mathbf{x}) \,.$$

Using Bayes and assumptions for background, observation errors:

$$\begin{aligned} \mathcal{J}(\mathbf{x}) &= -\ln \mathcal{P}^{a}(\mathbf{x}) = -\ln \mathcal{P}^{b}\left(\mathbf{x}\right) - \ln \mathcal{P}\left(\mathbf{y}|\mathbf{x}\right) + \text{const} \\ &\doteq \frac{1}{2} \left(\mathbf{x} - \mathbf{x}^{b}\right)^{T} \mathbf{B}^{-1} \left(\mathbf{x} - \mathbf{x}^{b}\right) + \frac{1}{2} \left(\mathcal{H}\left(\mathbf{x}\right) - \mathbf{y}\right)^{T} \mathbf{R}^{-1} \left(\mathcal{H}\left(\mathbf{x}\right) - \mathbf{y}\right) \end{aligned}$$

Optimization by gradient-based numerical procedure

$$\nabla_{\boldsymbol{x}} \mathcal{J} \left(\boldsymbol{x}^a \right) = \boldsymbol{\mathsf{B}}^{-1} \ \left(\boldsymbol{x}^a - \boldsymbol{x}^b \right) + \boldsymbol{\mathsf{H}}^{\mathsf{T}} \, \boldsymbol{\mathsf{R}} \ \left(\mathcal{H} (\boldsymbol{x}^a) - \boldsymbol{y} \right) \, ; \quad \boldsymbol{\mathsf{H}} = \mathcal{H} (\boldsymbol{x}^b) \, .$$

Hessian of cost function approximates inverse analysis covariance

$$abla^2_{\mathbf{x},\mathbf{x}}\mathcal{J} = \mathbf{B}^{-1} + \mathbf{H}^T \, \mathbf{R}^{-1} \, \mathbf{H} \approx \mathbf{A}^{-1}$$

Four dimensional variational data assimilation (4D-Var) I

- ► All observations at all times t₁, · · · , t_N are considered simultaneously
- The control variables (parameters p, initial conditions x₀, boundary conditions, etc) uniquely determine the state of the system at all future times
- 4D-Var MAP estimate via model-constrained optimization problem

$$\begin{aligned} \mathcal{J}\left(\mathbf{x}_{0}\right) &= \frac{1}{2} \left\|\mathbf{x}_{0} - \mathbf{x}_{0}^{b}\right\|_{\mathbf{B}_{0}^{-1}}^{2} + \frac{1}{2} \sum_{i=1}^{N} \left\|\mathcal{H}(\mathbf{x}_{i}) - \mathbf{y}_{i}\right\|_{\mathbf{R}_{i}^{-1}}^{2} \\ \mathbf{x}_{0}^{a} &= \arg\min \mathcal{J}\left(\mathbf{x}_{0}\right) \\ &\text{subject to: } \mathbf{x}_{i} = \mathcal{M}_{t_{0} \to t_{i}}\left(\mathbf{x}_{0}\right), \quad i = 1, \cdots, N \end{aligned}$$

Formulation can be easily extended to other model parameters

Four dimensional variational data assimilation (4D-Var) II

- The large scale optimization problem is solved in a reduced space using a gradient-based technique.
- The 4D-Var gradient reads

$$\nabla \mathcal{J}_{\mathbf{x}_0}\left(\mathbf{x}_0\right) = \mathbf{B}_0^{-1} \left(\mathbf{x}_0 - \mathbf{x}_0^{\mathrm{b}}\right) + \sum_{i=1}^{N} \left(\frac{\partial \mathbf{x}_i}{\partial \mathbf{x}_0}\right)^T \mathbf{H}_i^T \mathbf{R}_i^{-1} \left(\mathcal{H}(\mathbf{x}_i) - \mathbf{y}_i\right)$$

- ► Needs linearized observation operators $\mathbf{H}_i = \mathcal{H}'(\mathbf{x}_i)$
- ► Needs the transposed sensitivity matrix $(\partial \mathbf{x}_i / \partial \mathbf{x}_0)^T \in \mathbb{R}^{n \times n}$
- Adjoint models efficiently compute the transposed sensitivity matrix times vector products
- The construction of an adjoint model is a nontrivial task.

Correct models of background errors are of great importance for data assimilation

- Background error representation determines the spread of information, and impacts the assimilation results
- Needs: high rank, capture dynamic dependencies, efficient computations
- Traditionally estimated empirically (NMC, Hollingsworth-Lonnberg)
- 1. Tensor products of 1d correlations, decreasing with distance (Singh et al, 2010)
- Multilateral AR model of background errors based on "monotonic TLM discretizations" (Constantinescu et al 2007)
- 3. Hybrid methods in the context of 4D-Var (Cheng et al, 2007)

Virginia

Aug. 4, 2011. IFIP UQ Workshop, Boulder, CO

What is the effect of mis-specification of inputs?

(Daescu, 2008) Consider a *verification functional* $\Psi(\mathbf{x}_{v}^{a})$ defined on the optimal solution at a future time t_{v} . Ψ is a measure of the forecast error. What is the impact of small errors in the specification of covariances, background, and observation data?

$$\begin{aligned} \nabla_{\mathbf{y}_{i}} \Psi &= \mathbf{R}_{i}^{-1} \mathbf{H}_{i} \mathbf{M}_{t_{0} \to t_{i}} \left(\left(\nabla_{\mathbf{x}_{0}, \mathbf{x}_{0}}^{2} \mathcal{J} \right)^{-1} \nabla_{\mathbf{x}_{0}} \Psi \right) \\ \nabla_{\mathbf{R}_{i}(:)} \Psi &= \left(\mathbf{R}_{i}^{-1} (\mathcal{H}(\mathbf{x}_{i}^{a}) - \mathbf{y}_{i}) \right) \otimes \nabla_{\mathbf{y}_{i}} \Psi \\ \nabla_{\mathbf{x}^{b}} \Psi &= \mathbf{B}_{0}^{-1} \left(\left(\nabla_{\mathbf{x}_{0}, \mathbf{x}_{0}}^{2} \mathcal{J} \right)^{-1} \nabla_{\mathbf{x}_{0}} \Psi \right) \\ \nabla_{\mathbf{B}_{0}(:)} \Psi &= \left(\mathbf{B}_{0}^{-1} (\mathbf{x}_{0}^{a} - \mathbf{x}_{0}^{b}) \right) \otimes \nabla_{\mathbf{x}^{b}} \Psi \end{aligned}$$

General framework for sensitivity analysis Forward model equations link parameters and solutions:

$$\begin{split} \mathcal{F}(\mathbf{x},\theta) &= \mathbf{0} \in \mathcal{H}_F \ . \quad \mathcal{H}_F \text{= model constraint space, Hilbert: } \langle \cdot, \cdot \rangle_{\mathcal{H}_F} \\ \mathbf{x} \in \mathcal{H}_{\mathbf{x}} \ . \quad \mathcal{H}_{\mathbf{x}} \text{= model state space, Hilbert: } \langle \cdot, \cdot \rangle_{\mathcal{H}_{\mathbf{x}}} \ , \\ \theta \in \mathcal{H}_{\theta} \ . \quad \mathcal{H}_{\theta} \text{= parameter space, Hilbert: } \langle \cdot, \cdot \rangle_{\mathcal{H}_{\theta}} \ . \end{split}$$

The response functional (QoI) associates a real value to each state

$$\mathcal{J}(\boldsymbol{x}): \ \mathcal{H}_{\boldsymbol{x}} \ \longrightarrow \ \mathbb{R} \quad \left(e.g., \ \mathcal{J}(\boldsymbol{x}) = \frac{1}{2} \ \|\mathcal{H}(\boldsymbol{x}) - \boldsymbol{y}\|_{\boldsymbol{\mathsf{R}}^{-1}}^2 \right)$$

Assumptions:

- 1. \mathcal{F}, \mathcal{J} are continuously Frèchet differentiable.
- 2. $\mathcal{F}_{\mathbf{x}}$ has a continuous linear inverse mapping. By IFT a Frèchet differentiable model solution operator $\mathbf{x} = \mathcal{M}(\theta)$ exists locally

$$\mathcal{M}: \mathcal{H}_{\theta} \to \mathcal{H}_{\mathbf{x}}; \quad \mathbf{x} = \mathcal{M}(\theta); \quad \mathcal{M}'(\theta) = -\mathcal{F}_{\mathbf{x}}^{-1}(\mathbf{x}, \theta) \cdot \mathcal{F}_{\theta}(\mathbf{x}, \theta).$$

Formulation of the inverse problem as a model-constrained optimization problem Find the optimal vector of parameters θ_{opt} such that:

Comments.

1. The cost function depends implicitly on the parameters:

$$\mathcal{J}(\mathbf{X}) = \mathcal{J}\left(\mathcal{M}(\theta)\right) = \left(\mathcal{J} \circ \mathcal{M}\right) \ (\theta) \ .$$

2. Gradient-based optimization techniques require

$$abla_{ heta}\mathcal{J}=\mathcal{M}^{\prime*}(heta)\cdot
abla_{\mathbf{X}}\mathcal{J}$$

3. Difficulty: model solution operator is only defined implicitly.

Direct (forward) vs. adjoint sensitivity analysis

1. Tangent linear model is obtained by Frèchet differentiation

$$(\textit{TLM}): \quad \mathcal{F}_{\theta}(\theta, \mathbf{X}) \cdot \delta\theta + \mathcal{F}_{\mathbf{X}}(\theta, \mathbf{X}) \cdot \delta\mathbf{X} = \mathbf{0} \in \mathcal{H}_{\textit{F}} \; .$$

$$\delta \mathcal{J} = \langle \nabla_{\mathbf{x}} \mathcal{J}, \delta \mathbf{x} \rangle_{\mathcal{H}_{\mathbf{x}}} = \langle \nabla_{\theta} \mathcal{J}, \delta \theta \rangle_{\mathcal{H}_{\theta}} .$$

Comment. $\nabla_{\mathbf{x}} \mathcal{J}$ by direct differentiation. One TLM solution provides one inner product . To find the entire gradient $\nabla_{\theta} \mathcal{J}$...

Direct (forward) vs. adjoint sensitivity analysis

1. Tangent linear model is obtained by Frèchet differentiation

$$(\textbf{TLM}): \quad \mathcal{F}_{\theta}(\theta, \mathbf{X}) \cdot \delta\theta + \mathcal{F}_{\mathbf{X}}(\theta, \mathbf{X}) \cdot \delta\mathbf{X} = \mathbf{0} \in \mathcal{H}_{F} \ .$$

$$\delta \mathcal{J} = \langle \nabla_{\mathbf{x}} \mathcal{J}, \delta \mathbf{x} \rangle_{\mathcal{H}_{\mathbf{x}}} = \langle \nabla_{\theta} \mathcal{J}, \delta \theta \rangle_{\mathcal{H}_{\theta}} \ .$$

Comment. $\nabla_{\mathbf{x}} \mathcal{J}$ by direct differentiation. One TLM solution provides one inner product . To find the entire gradient $\nabla_{\theta} \mathcal{J}$... 2. *Adjoint model* obtained using duality:

$$\begin{split} &(\lambda \in \mathcal{H}_{F}^{*} \equiv \mathcal{H}_{F}) \iff \langle \lambda, \mathcal{F}_{\mathbf{x}} \cdot \delta \mathbf{x} \rangle_{\mathcal{H}_{F}} + \langle \lambda, \mathcal{F}_{\theta} \cdot \delta \theta \rangle_{\mathcal{H}_{F}} = \mathbf{0} \in \mathbb{R} \\ &(\textit{by adjoint}) \iff \langle \mathcal{F}_{\mathbf{x}}^{*} \cdot \lambda, \delta \mathbf{x} \rangle_{\mathcal{H}_{\mathbf{x}}} + \langle \mathcal{F}_{\theta}^{*} \cdot \lambda, \delta \theta \rangle_{\mathcal{H}_{\theta}} = \mathbf{0} \in \mathbb{R} \,. \\ &ADJ : \quad \mathcal{F}_{\mathbf{x}}^{*} \cdot \lambda = -\nabla_{\mathbf{x}} \mathcal{J}(\mathbf{x}) \,. \\ &\langle \nabla_{\mathbf{x}} \mathcal{J}(\mathbf{x}), \delta \mathbf{x} \rangle_{\mathcal{H}_{\mathbf{x}}} = \langle (\mathcal{F}_{\theta})^{*} \cdot \lambda, \delta \theta \rangle_{\mathcal{H}_{\theta}} = \langle \nabla_{\theta} \mathcal{J}, \delta \theta \rangle_{\mathcal{H}_{\theta}} = \delta \mathcal{J} \,. \end{split}$$

Comment. Adjoint model does not depend on the particular perturbations $\delta\theta$, $\delta \mathbf{x}$, and needs to be solved *only once*.

Continuous and discrete adjoints of mass balance equations lead to different computational models

$$\nabla_{\mathbf{y}^{0}} \psi = \dots + \sum_{k=1}^{N} \left(\partial \mathbf{y}^{k} / \partial \mathbf{y}^{0} \right)^{\mathbf{T}} \left(\mathbf{H}^{k} \right)^{\mathbf{T}} \mathbf{R}_{k}^{-1} \left(\mathbf{H}^{k} \mathbf{y}^{k} - \mathbf{z}_{obs}^{k} \right)$$

Aug. 4, 2011. IFIP UQ Workshop, Boulder, CO

Virginia

ecn

Discrete adjoints of advection numerical schemes can become inconsistent with the adjoint PDE

Change of forward scheme pattern:

- Change of upwinding
- Sources/sinks
- Inflow boundaries scheme Example: 3rd order upwind FD

Virginia

Aug. 4, 2011. IFIP UQ Workshop, Boulder, CO

Discrete Runge-Kutta adjoints can be regarded as "numerical methods" applied to the adjoint ODE

RK Method

$$\mathbf{y}^{\mathbf{n}+1} = \mathbf{y}^{\mathbf{n}} + h \sum_{i=1}^{s} b_i \mathbf{f}(\mathbf{Y}^i),$$

 $\mathbf{Y}^i = \mathbf{y}^{\mathbf{n}} + h \sum_{i=1}^{s} a_{i,j} \mathbf{f}(\mathbf{Y}^j)$ Discrete RK Adjoint
[Hager, 2000]
 $\lambda^{\mathbf{n}} = \lambda^{\mathbf{n}+1} + \sum_{i=1}^{s} \theta^i$
 $\theta^i = h \mathbf{J}^{\mathbf{T}}(\mathbf{Y}^i) \cdot \left[b_i \lambda^{\mathbf{n}+1} + \sum_{j=1}^{s} a_{j,i} \theta^j \right]$

Aug. 4, 2011. IFIP UQ Workshop, Boulder, CO

Virginia

ech

Discrete Runge-Kutta adjoints: error analysis

Local error analysis: The discrete adjoint of RK method of order p **is an order p** discretization of the adjoint equation. [Sandu, 2005]. This:

- works for both explicit and implicit methods
- true for arbitrary orders p

Global error analysis: The discrete adjoint (of a RK method convergent with order p) **converges with order p** to the solution of the adjoint ODE. [Sandu, 2005] The analysis accounts for:

- 1. the truncation error at each step, and
- *2. the different trajectories about which the continuous and the discrete adjoints are defined*

Stiff case: Consider a stiffly accurate Runge Kutta method **of order p** with invertible coefficient matrix A. The discrete adjoint provides:

- an **order p** discretization of the adjoint of **nonstiff variable**
- an order min(p,q+1,r+1) of the adjoint of stiff variable [Sandu, 2005]

Properties of discrete adjoint LMM

- 1. For fixed step sizes
 - the discrete adjoint starting and ending steps, in general, are not consistent approximations of the adjoint ODE
 - the adjoint LMM is (at least) first order consistent with the adjoint ODE
- 2. For **variable step sizes** the adjoint LMM is not a consistent discretization of the adjoint ODE
- 3. The discrete **adjoint variable at the initial time** is an order p approximation of the continuous adjoint, where p is the order of the (forward) LMM method. *[Sandu, 2007]*

Uncertainty quantification using polynomial chaos and the STEM model

Data assimilation. The Bayesian framework. UQ/UA for STEM [23/25] Aug. 4, 2011. IFIP UQ Workshop, Boulder, CO. (http://csl.cs.vt.edu)

Uncertainty apportionment with the STEM model

Figure: Top: New York. Bottom: Boston. 48 hrs ozone mean, standard deviation, and uncertainty (variance) apportionment.

Quantification of the probability of non-compliance with the NAAQS ozone maximum admissible levels

Figure: Boston 8hrs average ozone PDF shows a 68% probability of exceeding the maximum admissible level of 75 ppbv.

Ensemble-based chemical data assimilation is an alternative to variational techniques

The Ensemble Kalman Filter (EnKF) popular in NWP but not extensively used before with CTMs

[Constantinescu et al., 2007]

Ozonesonde S2 (18 EDT, July 20, 2004)

Virginia

èch

Aug. 4, 2011. IFIP UQ Workshop, Boulder, CO

Ground level ozone at 2pm EDT, July 20, 2004, better matches observations after LEnKF data assimilation

Observations: circles, color coded by O₃ mixing ratio

Forecast (R²=0.24/0.28)

Analysis (R²=0.88/0.32)

èch

Aug. 4, 2011. IFIP UQ Workshop, Boulder, CO

The use of adjoints in large scale simulations: atmospheric chemical transport models

Adjoint sensitivity analysis of non-attainment metrics can help guide policy decisions

STEM: Assimilation adjusts O₃ predictions considerably at 4pm EDT on July 20, 2004

Observations: circles, color coded by O₃ mixing ratio

Assimilation of elevated observations for July 20, 2004

NOAA P3 flight observations

Ozonesonde observations (Rhode Island)

Aug. 4, 2011. IFIP UQ Workshop, Boulder, CO

The inversion procedure can be extended to emissions, boundary conditions, etc.

Texas: 4am CST July 16 to 8pm CST on July 17, 2004.

Smallest Hessian eigenvalues (vectors) approximate the principal aposteriori error components

$$\left(\nabla^{2}_{y^{0},y^{0}}\Psi\right)^{-1} \approx \operatorname{cov}(y^{\operatorname{opt}})$$

(b) East view

ſech

Aug. 4, 2011. IFIP UQ Workshop, Boulder, CO

Assimilation of TES ozone column observations, August 2006. Lobatto-IIIC integrates stiff chemistry.

Aug. 4, 2011. IFIP UQ Workshop, Boulder, CO

Quality of TES ozone column data assimilation results for several methods (August 1-15, 2006)

CSL

Aug. 4, 2011. IFIP UQ Workshop, Boulder, CO

Dynamic integration of chemical data and atmospheric models is an important, growing field

- the tools needed for 4D-Var chemical data assimilation are in place:
 - (adjoints for stiff systems, aerosols, transport; singular vectors, parallelization and multi-level checkpointing schemes, models of background errors)
- all algorithms are on a solid theoretical basis
- the ensemble filter methods show promise
- STEM, CMAQ, GEOS-CHEM have been endowed with data assimilation capabilities
- the tool strengths have been demonstrated using real (field campaign) data; ambitious science projects are ongoing

