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» Programming environment for
and graphics

» www.r-project.org

» Free and open source

» Lingua franca of statistical computing:

implementations of new statistical methods often

first appear as R functions

» ldeal environment for uncertainty analysis,
also well suited for prototyping general purpose
scientific computing algorithms

statistical computing, data analysis,

INFLUX Experiment (Indianapolis, IN)
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www.r-project.org

INFLUX Experiment

— CO2 measurements on curtain flight
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Interpolation
— PROBLEM

» Given

= Measured values y1, ..., ym of real-valued function
6 at x1, ..., Xm in metric space X

» Estimate 6(x) for any x “in the middle” of the {x;}

» Characterize uncertainty u(y) associated with
estimate
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Model Based Interpolation
— APPROACHES

» Model observations probabilistically — interpolation
problem becomes statistical estimation problem

" Yi=0(x)+E€

» {€;} realized values of non-observable random
variables (measurement errors)

» Interpolate signal, not signal + noise

Local regression vs. Kriging
» O locally quadratic

» O realized value of Gaussian random function ©
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Local Regression

9.0

— Signal
Data = Signal + Noise

> ApprOXimate ?] local/y by —— Local Regression
parabola at each target
location x

8.5

8.0
1

» Fit each parabola by
(robust) weighted least
squares

7.5
1

= Weights decrease to
zero with increasing
distance to target
location

7.0
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Ordinary Kriging

9.0

— Signal
Data = Signal + Noise

> {@(X)} Gaussian RVs —— Local Regression
with mean u and
covariance function

Y(h) = Cov(O(x), ©(x + h))

8.5

1 — Kriging

8.0
1

» 0(x) is weighted
average of data {y;}

7.5
1

= Weights depend on
v(h) and on
variances of {€;}

7.0
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Kriging Assessment of Uncertainty

» Kriging often heralded as providing assessments of
uncertainty of interpolations automatically

» In many instances of application, kriging’s built-in
assessments underestimate uncertainty because
one pretends that y = v

= Bayesian kriging provides means to account for this
often neglected component of uncertainty
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Interpolation Uncertainty
— COMPONENTS AND ASSESSMENT

COMPONENTS
» Measurement error — {€;} in y; = 0(x;) + €;

» Model selection and calibration — different results
corresponding to different choices of functional
form for 6, and parameter estimation

ASSESSMENT

» Cross-validation (leave-some-out)

» Model inter-comparisons
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Local Regression Interpolation
— INFLUX EXPERIMENT: CO>
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Kriging Interpolation
— INFLUX EXPERIMENT: CO>
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Local Regression vs. Kriging
— INFLUX EXPERIMENT: CO>
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Cross-Validation & Model Uncertainty

— INFLUX EXPERIMENT: CO>

CROSS-VALIDATION

» Partition data into training and testing subsets: fit
models using former, assess performance on latter

e/

» Partition may be random, or /“""»‘E\WW‘“‘“"‘““”“W“”\)
may include consideration for ' ¢ o
particulars of situation e

MODEL UNCERTAINTY

» Compare predictions made by different models
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Uncertainty Budget

— INFLUX EXPERIMENT: CO>

SOURCE EVALUATION STD. UNCERT.
Model selection CVv 0.36
Interpolation Ccv 0.91

Instr. calibration LAB+CERT 0.034

Instr. repeatability MANUF * 0.2

Instr. drift MANUF * 0.2
Atmospheric temperature MANUF* 0.0075
Atmospheric pressure MANUF * 0.7

Expanded Uncertainty Ugso, = 2.5 ppmv

* Picarro G2301-m Flight 2.5=21/0.362+---+0.72
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Influenza A Virus Infection in Humans
Baccam et al. (Aug, 2006) Journal of Virology

PROGRESSION
» Initial exponential growth of viral load
» Peaking 2-3 days post-infection

» Exponential decrease to undetectable levels
at 6-8 days

PREDICTION
» Predict time when viral load peaks

» Estimate basic reproductive number of infection
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Influenza A — Kinetics

T No. of uninfected target cells
I No. of productively infected cells

vV Viral load
ar TV o TV =4I i I—vyV
gt =P at P gt Y
B Infection rate
1/6 Lifespan of infected cell
P Increment to viral load per infected cell

Y Viral clearance rate

SOLUTION: ODEPACK (Livermore Solver for Ordinary
Differential Equations, LSODA) — R package deSolve
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Influenza A — Data & Statistical Model

» Patient 4 (Table 1, Baccam et al., 2006)

v HciDso/mif

0e+00 1le+06 2e+06 3e+06 4e+06

» Generalized non-linear model for viral load V
" log;oV ~ GAU(v, T?)
= v=Vv(B,6,p,7Y) — solution of kinetic model
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Influenza A — Prediction & Estimation

» Predict time argmax; V: when viral load peaks

TCIDso — 50 % Tissue Culture Infective Dose per
milliliter of nasal wash

» Estimate Basic Reproductive Number

__ PBTo

R
0 7o

= Average number of second-generation infections
produced by single infected cell placed among
susceptible cells

» If Rp > 1 infection progresses full course

» If Rop < 1 infection dies out prematurely
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Influenza A — Uncertainty Assessment
PARAMETRIC BOOTSTRAP

» Compute numerical approximation to Hessian
H(B, 6, p, v) of negative log-likelihood used to fit
kinetic model to data for Patient 4

» Fork=1,..., K

= Draw sample (Bk, 6k, Pk, Yk) from rpuAItivariate
Gaussian distribution with mean (8, ¢, 0,7%) and
covariance matrix H= (8, 6, o, ¥)

= Draw one sample from uniform distribution for each
initial condition To £0.17q, Io £0.1Ip, Vo £ 0.1V

= Solve kinetic model with perturbed parameters and
compute ¢(Bk, ok, Pk, Yk)
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Influenza A — Uncertainty Assessment
RESULTS K =10000 — VIRAL LOAD PEAK

Prob. Density
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» argmax; Vi = 2.9PID, u(argmax; V) = 0.4 PID
» Shortest 95 % probability interval (2.3 PID, 3.7 PID)
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Influenza A — Uncertainty Assessment
RESULTS K=10000 — REPRODUCTIVE NUMBER

Prob. Density
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» R=17.5, u(R)=3.5
» Shortest 95 % probability interval (2, 15)
» R > 5 with probability 76 %
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Approximation

» For unknown function ¢ : X — R that is “expensive”
to evaluate, observe

(X1, ¥(X1)+€1), ..os (Xm, Y(Xm) +€m)

= Non-observable measurement errors €1, ..., €m

» Develop approximant ¢ and assess its quality

= EXAMPLE
arg;nax Ve=¢(B,5,p,7)

~ @(B,6,p,7)
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Projection Pursuit Magic
— AT A PRICE

» Finds interesting low-dimensional projections of a
high-dimensional point cloud

= Builds predictors out of these projections

» Automatically sets aside variables with little
predictive power

» Bypasses curse of dimensionality by focussing on
functions of linear combinations of the original
variables

PRICE: Compute-intensive technique
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Universal Approximant
PROJECTION PURSUIT

» Friedman & Tukey (1974)

The algorithm seeks to find one- and two-
dimensional linear projections of multivariate
data that are relatively highly revealing

» Projection Pursuit Regression
— Friedman & Stuetzle (1981)

K
Yx) = @(x) = a0+ Y oo x)
k=1

= IMPLEMENTATION: R function ppr

» Diaconis & Shahshahani (1984)
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Influenza A — Projection Pursuit
RIDGE FUNCTIONS FOR VIRAL LOAD PEAK TIME

argmax; Ve = y¢(B, 6, p,7v)
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Cross-validated rel. approxim. error: 3%
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Summation

» Non-linear, computationally expensive models — in
medicine, atmospheric science, oceanography, etc.
— challenge traditional uncertainty analysis toolkit

» R is state-of-the-art platform for statistical modeling
and uncertainty analysis, also offering ample
capabilities for general scientific computing

» Model sampling, cross-validation and the statistical
bootstrap are general-purpose tools for realistic
uncertainty assessment
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