Model-Based Interpolation, Prediction, and Approximation

- Statistical Computing for Uncertainty Analysis -

Antonio Possolo

Statistical Engineering Division
Information Technology Laboratory
August 4, 2011

NGT

National Institute of Standards and Technology

Outline

Statistical Computing
R - Statistical computing and graphics
Interpolation
INFLUX experiment
Local regression
Kriging
Prediction
Viral load in influenza A infection
Approximation
Ensemble of solutions of ODEs
Projection pursuit regression
Ridge functions for viral load peak time

- Programming environment for
 statistical computing, data analysis, and graphics
- www.r-project.org
- Free and open source
- Lingua franca of statistical computing: implementations of new statistical methods often first appear as R functions
- Ideal environment for uncertainty analysis, also well suited for prototyping general purpose scientific computing algorithms

INFLUX Experiment (Indianapolis, IN)

- FLIGHT PATH

INFLUX Experiment

$-\mathrm{CO}_{2}$ measurements on curtain flight

Interpolation

- PROBLEM
- Given
- Measured values y_{1}, \ldots, y_{m} of real-valued function θ at χ_{1}, \ldots, x_{m} in metric space \mathcal{X}
- Estimate $\theta(x)$ for any x "in the middle" of the $\left\{x_{i}\right\}$
- Characterize uncertainty $u(y)$ associated with estimate

Model Based Interpolation

- APPROACHES

- Model observations probabilistically - interpolation problem becomes statistical estimation problem
- $y_{i}=\theta\left(x_{i}\right)+\epsilon_{i}$
- $\left\{\epsilon_{i}\right\}$ realized values of non-observable random variables (measurement errors)
- Interpolate signal, not signal + noise

Local regression vs. Kriging

- θ locally quadratic
- θ realized value of Gaussian random function Θ

Local Regression

- Approximate θ locally by parabola at each target location x
- Fit each parabola by (robust) weighted least squares
- Weights decrease to zero with increasing distance to target location

Ordinary Kriging

- $\{\Theta(x)\}$ Gaussian RVs with mean μ and covariance function
$\gamma(h)=\operatorname{Cov}(\Theta(x), \Theta(x+h))$
- $\hat{\theta}(x)$ is weighted average of data $\left\{y_{i}\right\}$
- Weights depend on $\gamma(h)$ and on variances of $\left\{\epsilon_{i}\right\}$

Kriging Assessment of Uncertainty

- Kriging often heralded as providing assessments of uncertainty of interpolations automatically
- In many instances of application, kriging's built-in assessments underestimate uncertainty because one pretends that $\widehat{\gamma}=\gamma$
- Bayesian kriging provides means to account for this often neglected component of uncertainty

Interpolation Uncertainty

- COMPONENTS AND ASSESSMENT

COMPONENTS

- Measurement error - $\left\{\epsilon_{i}\right\}$ in $y_{i}=\theta\left(x_{i}\right)+\epsilon_{i}$
- Model selection and calibration - different results corresponding to different choices of functional form for θ, and parameter estimation

ASSESSMENT

- Cross-validation (leave-some-out)
- Model inter-comparisons

Local Regression Interpolation

- INFLUX EXPERIMENT: CO_{2}

Kriging Interpolation

- INFLUX EXPERIMENT: CO_{2}

Local Regression vs. Kriging
 - INFLUX EXPERIMENT: CO_{2}

Cross-Validation \& Model Uncertainty

CROSS-VALIDATION

- Partition data into training and testing subsets: fit models using former, assess performance on latter
- Partition may be random, or may include consideration for particulars of situation

MODEL UNCERTAINTY

- Compare predictions made by different models

Uncertainty Budget
 - INFLUX EXPERIMENT: CO_{2}

SOURCE	EVALUATION	STD. UNCERT.
Model selection	CV	0.36
Interpolation	CV	0.91
Instr. calibration	LAB+CERT	0.034
Instr. repeatability	MANUF *	0.2
Instr. drift	MANUF *	0.2
Atmospheric temperature	MANUF *	0.0075
Atmospheric pressure	MANUF *	0.7

Expanded Uncertainty
 $\mathbf{U}_{95 \%}=\mathbf{2 . 5} \mathrm{ppmv}$

[^0]
Influenza A Virus Infection in Humans

Baccam et al. (Aug, 2006) Journal of Virology

PROGRESSION

- Initial exponential growth of viral load
- Peaking 2-3 days post-infection
- Exponential decrease to undetectable levels at 6-8 days

PREDICTION

- Predict time when viral load peaks
- Estimate basic reproductive number of infection

Influenza A - Kinetics

T No. of uninfected target cells
I No. of productively infected cells
\checkmark Viral load
$\frac{d T}{d t}=-\beta T V \quad \frac{d I}{d t}=\beta T V-\delta I \quad \frac{d V}{d t}=\rho I-\gamma V$
$\beta \quad$ Infection rate
$1 / \delta$ Lifespan of infected cell
$\rho \quad$ Increment to viral load per infected cell
$\gamma \quad$ Viral clearance rate

SOLUTION: ODEPACK (Livermore Solver for Ordinary Differential Equations, LSODA) - R package deSolve

Influenza A - Data \& Statistical Model

- Patient 4 (Table 1, Baccam et al., 2006)

- Generalized non-linear model for viral load V
- $\log _{10} V \sim \operatorname{GAU}\left(\nu, \tau^{2}\right)$
- $\nu=\nu(\beta, \delta, \rho, \gamma)$ - solution of kinetic model

Influenza A - Prediction \& Estimation

- Predict time $\operatorname{argmax}_{t} V_{t}$ when viral load peaks TCID $_{50}$ - 50 \% Tissue Culture Infective Dose per milliliter of nasal wash
- Estimate Basic Reproductive Number

$$
R_{0}=\frac{\rho \beta T_{0}}{\gamma \delta}
$$

- Average number of second-generation infections produced by single infected cell placed among susceptible cells
- If $R_{0}>1$ infection progresses full course
- If $R_{0}<1$ infection dies out prematurely

Influenza A - Uncertainty Assessment PARAMETRIC BOOTSTRAP

- Compute numerical approximation to Hessian $H(\beta, \delta, \rho, \gamma)$ of negative log-likelihood used to fit kinetic model to data for Patient 4
- For $k=1, \ldots, k$
- Draw sample ($\beta_{k}, \delta_{k}, \rho_{k}, \gamma_{k}$) from multivariate Gaussian distribution with mean ($\widehat{\beta}, \widehat{\delta}, \widehat{\rho}, \widehat{\gamma})$ and covariance matrix $H^{-1}(\widehat{\beta}, \widehat{\delta}, \widehat{\rho}, \widehat{\gamma})$
- Draw one sample from uniform distribution for each initial condition $T_{0} \pm 0.1 T_{0}, I_{0} \pm 0.1 I_{0}, V_{0} \pm 0.1 V_{0}$
- Solve kinetic model with perturbed parameters and compute $\psi\left(\beta_{k}, \delta_{k}, \rho_{k}, \gamma_{k}\right)$

Influenza A - Uncertainty Assessment RESULTS $K=10000$ - VIRAL LOAD PEAK

- $\operatorname{argmax}_{t} V_{t}=2.9$ PID, $u\left(\operatorname{argmax} V_{t}\right)=0.4$ PID
- Shortest 95 \% probability interval (2.3 PID, 3.7 PID)

Influenza A - Uncertainty Assessment
RESULTS $K=10000$ - REPRODUCTIVE NUMBER

- $\widehat{R}=7.5, u(R)=3.5$
- Shortest 95% probability interval $(2,15)$
- $R>5$ with probability 76%

Approximation

- For unknown function $\psi: \mathcal{X} \mapsto \mathbb{R}$ that is "expensive" to evaluate, observe

$$
\left(x_{1}, \psi\left(x_{1}\right)+\epsilon_{1}\right), \ldots,\left(x_{m}, \psi\left(x_{m}\right)+\epsilon_{m}\right)
$$

- Non-observable measurement errors $\epsilon_{1}, \ldots, \epsilon_{m}$
- Develop approximant φ and assess its quality
- EXAMPLE

$$
\begin{aligned}
\underset{t}{\operatorname{argmax}} V_{t} & =\psi(\beta, \delta, \rho, \gamma) \\
& \approx \varphi(\beta, \delta, \rho, \gamma)
\end{aligned}
$$

Projection Pursuit Magic
 - AT A PRICE

- Finds interesting low-dimensional projections of a high-dimensional point cloud
- Builds predictors out of these projections
- Automatically sets aside variables with little predictive power
- Bypasses curse of dimensionality by focussing on functions of linear combinations of the original variables

PRICE: Compute-intensive technique

Universal Approximant PROJECTION PURSUIT

- Friedman \& Tukey (1974)

The algorithm seeks to find one- and twodimensional linear projections of multivariate data that are relatively highly revealing

- Projection Pursuit Regression
— Friedman \& Stuetzle (1981)

$$
\psi(x) \approx \varphi(x)=\alpha_{0}+\sum_{k=1}^{K} \varphi_{k}\left(\alpha_{k}^{\top} x_{i}\right)
$$

- IMPLEMENTATION: R function ppr
- Diaconis \& Shahshahani (1984)

Influenza A - Projection Pursuit RIDGE FUNCTIONS FOR VIRAL LOAD PEAK TIME

$$
\operatorname{argmax}_{t} V_{t}=\psi(\beta, \delta, \rho, \gamma)
$$

Cross-validated rel. approxim. error: 3%

Summation

- Non-linear, computationally expensive models - in medicine, atmospheric science, oceanography, etc. - challenge traditional uncertainty analysis toolkit
- R is state-of-the-art platform for statistical modeling and uncertainty analysis, also offering ample capabilities for general scientific computing
- Model sampling, cross-validation and the statistical bootstrap are general-purpose tools for realistic uncertainty assessment

[^0]: * Picarro G2301-m Flight
 $2.5=2 \sqrt{0.36^{2}+\cdots+0.7^{2}}$

