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Motivation 

• How well has quantitative risk assessment performed in high-
consequence: 
–  System failures? 
–  Modeling and simulation analyses? 

• What improvements are needed in: 
–  Quantitative risk assessment? 
–  Characterization of uncertainty? 
–  Risk-informed decision making? 
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Outline of the Presentation 

•  Review the structure of quantitative risk assessment (QRA) 

•  What can be learned from recent: 

–  High-consequence system failures 

–  High-consequence modeling and simulation (M&S) analyses 

–  Criticisms of QRA 

•  Lessons learned 

•  Closing remarks 



Structure of Quantitative Risk Assessment 

 The goal of QRA is to quantify the answer to three questions 
(Kaplan and Garrick, 1981): 
1)   What can go wrong? 

2)   How likely is it to go wrong? 

3)   What are the consequences of going wrong? 
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How Do We Answer These Questions? 

1.  What can go wrong? 
–  Identify initiating events (abnormal and hostile environments) 
–  Construct plausible event and fault trees (scenarios) 

2.  How likely is each plausible scenario? 
–  Use experimental and operational data to characterize probabilities 
–  Use expert-opinion to characterize probabilities 
–  Assume independence/dependence between events/subsystems 
–  Use M&S to predict outcomes of each scenario 
–  Compute probabilities of each scenario 

3.  What are the consequences of each scenario? 
–  Merge probabilities and adverse impact to obtain a consequence for 

each scenario 
or 
–  Deal directly with computed probabilities of each scenario 
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What Can Be Learned From 
High-Consequence System Failures? 

• Three Mile Island Event (1979) 

• Loss of Space Shuttle Challenger (1986) 

• Chernobyl Disaster (1986) 

• Loss of Space Shuttle Columbia (2003) 

• Fukushima Disaster (2011) 

6 



What Can Go Wrong? 

•  Identify initiating events: 
–  (Chernobyl) Incorrect recognition of plant operator actions 

during a reactor-test scenario 

• Construct plausible event and fault trees for each scenario: 
–  (TMI) Incorrect recognition of plant operator actions during a 

minor abnormal event 
–  (Fukushima) Incorrect recognition of the impact of a large 

tsunami 
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How Likely Is Each Plausible Scenario? 
• Use experimental and operational data to characterize probabilities: 
–  (Challenger) Operational data on O-ring leakage was overruled by 

management 

• Use expert-opinion to characterize probabilities: 
–  (Fukushima) Gross underestimate of the probability of a large tsunami 

• Assume independence/dependence between events/subsystems: 
–  (Fukushima) Assumed independence of cooling-water-pump failure 

• Use M&S to predict outcomes: 
–  (Columbia) Erroneous use of M&S to predict foam impact damage 

• Compute probabilities of each scenario: 
–  (TMI) Gross underestimate of the probability of severe core damage 
–  (Fukushima) Gross underestimate of the probability of severe core 

damage 
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What Are The Consequences 
of Each Scenario? 

• Merge probabilities and the negative impact to obtain the 
consequence of each scenario: 
–  (TMI) Gross underestimate of the impact of the failure 
–  (Columbia) NASA management unwilling to take prudent action 

while Columbia was in orbit 
–  (Fukushima) Japanese Nuclear and Industrial Safety Agency did 

not act on warnings of the risk of loss of electrical power by the 
U. S. Nuclear Regulatory Commission in 1990. 

–  (Fukushima) Gross underestimate of the impact of the failure 
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Constructive Criticisms From 
Pilkey and Pilkey-Jarvis (2007) 

• Prediction of complex natural processes is essentially 
impossible 

• Model calibration is fundamentally different than model 
prediction 

• Risk assessment can be misused (or ignored) to fit the agenda of 
groups that have a vested interest in the activity 

• Recommendations for risk assessment: 
–  Assessment should be transparent and open to review 
–  Parameters should be based on experimental and field observations 
–  Should be reproducible by an independent party 
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Lesson Learned 1 

• Lack of an external, independent, review of a QRA can 
destroy its credibility 

 “The fundamental question should not be whether old 
studies (1 in 100,00 loss of crew) were inaccurate. What is 
important is what NASA does with them.” (Apostolakis, 2004) 

“The [NASA] safety organization sits right beside the person 
making the decisions, but behind the safety organization, 
there’s nothing back there. There’s no people, money, 
engineering expertise, analysis.” (Admiral Gehman, 2003) 

• Conclusion: 

Lack of independent review of a QRA and lack of use of a QRA 

is a purposeful decision of the controlling authority. 
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Lesson Learned 2 

• Expert-opinion-based probabilities and assumed independence 
of events/subsystems have been grossly in error 

• Helton et al (2011) stated: 
"When confronted with a probability or a calculation involving probability, the 

first two questions to ask are ‘‘What is the sample space?’’ and ‘‘What subset 
of the sample space is under consideration?’’. If you do not know the answers 
to these two questions, then you do not know enough to meaningfully assess 
the probability or calculated result under consideration. … Basically, having a 
probability without knowing the associated sample space and the subset of that 
sample space for which the probability is defined is analogous to knowing the 
answer to a question without knowing what the question is.” 

Conclusion: 

 Lack of understanding of the assumptions and details of 

the analysis are lost in communication. 
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Lesson Learned 3 

• Using model calibration can greatly underestimate model 
form and model-parameter uncertainty 

• Lipton (2005) stated: 

 “Accommodation [calibration] is like drawing the bulls-eye 
afterwards, where as in prediction the target is there in 
advance.” 

• Conclusion: 

Lack of knowledge due to model form and parameter 

uncertainty is underrepresented to the decision maker. 
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Example Of How Uncertainty 
Can Be More Clearly Communicated 
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From Roy and 
Oberkampf (2011) 



Another Example 
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Predicted Track of 
Emily 2005 

From Green (2007) 
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Concluding Remarks 
• Risk assessment community must improve the clarity of communicating 

uncertainty by using imprecise probability distributions. 

•  Increased uncertainty bounds commonly lead to results that are 
unwelcomed by decision makers and vested interests. 

• When high risks or system failure are predicted, prediction carries much 
less influence than observed failures. 

• Attorneys, politicians, and special interest groups have little interest in 
the “truth”, transparency, or independent-peer-reviewed risk assessment. 

•  For high-consequence systems there must be significant independence 
between the system operator and the regulating authority. 
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