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Mathematical formulation I

Consider operator equation, physical system modelled by A,

depending on quantity q:

A(q;u) = f u ∈ V, f ∈ F ,

⇔ ∀v ∈ V : a(q;u; v) = 〈A(q;u), v〉 = 〈f, v〉,
V — space of states, F = V∗ — dual space of actions / forcings.

Variant: A(ς(q);u) = f , dependence on a function ς(q),

such that parameter p ∈ P may be

p = q | p = (q, f) | p = (q, f, u0) | p = (ς(q), . . .) . . .

General formulation—non-linear operator, semi-linear form:

A(p;u) = f ⇔ ∀v ∈ V : a(p;u; v) = 〈A(p;u), v〉 = 〈f, v〉.
Want to describe A(p, ·), f(p), ς(p), or u(p) −→ r(p).

In the end desired quantities of interest (QoI) Ψι(p, u(p)).
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Problem with parameters—diffusion SPDE
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Geometry

2D model domain G
Simple stationary model of groundwater flow with parameters

−∇ · (κ(x) · ∇u(x)) = f(x) x ∈ G ⊂ Rd & b.c.

Parameters from modelling epistemic / aleatoric uncertainty or design.

Specific values of parameter p are realisations of κ, f , or b.c.

This involves an infinite (at first sight uncountable) real functions

(random variables—RVs)
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Realisation of κ
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Parametric problems

For each p in a parameter set P, let r(p) be an

element in a Hilbert space Z (for simplicity).

With r : P → Z, denote U = span r(P) = span im r.

What we are after: other representations of r or U = span im r.

To each function r : P → U corresponds a linear map R : U → R̃:

R : U 3 u 7→ 〈r(·)|u〉U ∈ R̃ = imR ⊂ RP.

By construction R is injective. Use this to make R̃ a pre-Hilbert space:

∀φ, ψ ∈ R̃ : 〈φ|ψ〉R := 〈R−1φ|R−1ψ〉U .

R−1 is unitary on completion R.
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RKHS and classification

R is a reproducing kernel Hilbert space —RKHS— with symmetric kernel

κ(p1, p2) = 〈r(p1)|r(p2)〉U ∈ RP×P; ∀p ∈ P : κ(p, ·) ∈ R,
and span{κ(·, p) | p ∈ P} = R.

Reproducing property:

∀φ ∈ R : 〈κ(p, ·)|φ(·)〉R = φ(p).

In other settings (classification, machine learning, SVM),

when different subsets of P have to be classified,

the space U and the map r : P → U is not given,

but can be freely chosen.

It is then called the feature map.

The whole procedure is called the kernel trick.
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Examples

The function r(p) may be

• function(s) describing some system— A(p;u) = f .

• a random field / process as input to some system— A(ς(p);u) = f .

• the solution / state of some system depending on the above— u(p).

• the (non-linear) operator A(p; ·) / bi-linear / semi-linear form a(p; ·; ·)
determining some system.

One special case is when the parameter is a random quantity.

Methods can be inspired from this model.
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Representation on RKHS

In contrast to P (just some set), R is a vector space.

Assume that R is separable, choose complete orthonormal system

(CONS) {ym}m such that span{y1, y2, . . .} = R.

Set um = R−1ym ∈ U then r(p) =
∑
m ym(p)um (linear in ym).

We find that r ∈ U ⊗R, and

R =
∑
m um ⊗ ym and R−1 =

∑
m ym ⊗ um.

But choice of CONS is arbitrary.

Let QR : `2 3 a = (a1, a2, . . .) 7→
∑
m amym ∈ R —a unitary map.

Then R−1 ◦QR (unitary) represents U , linear in a −→ r ∈ U ⊗ `2.

We are looking for representations on other vector spaces.
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‘Correlation’

If there is another inner product 〈·|·〉Q on a subspace Q ⊂ RP,

(e.g. if (P, µ) is measure space, set Q := L2(P, µ))

a linear map C := R∗R —the ‘correlation’ operator—is defined by

∀u, v ∈ U ; 〈Cu, v〉U ′×U = 〈Ru|Rv〉Q; R∗ w.r.t. Q.(
In case Q = L2(P, µ) : C =

∫
P r(p)⊗ r(p)µ(dp)

)
It is self-adjoint and positive definite → has spectrum σ(C) ⊆ R+.

Spectral decomposition with projectors

Eλ on λ ∈ σ(C) = σp(C) ∪ σc(C)

Cu =

∫ ∞
0

λ dEλu =
∑

λm∈σp(C)

λm〈vm|u〉U vm +

∫
σc(C)

λ dEλu.

(Assume simple spectrum for simplicity ;-)
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Spectral decomposition

Often C has a pure point spectrum (e.g. C or C−1 compact)

⇒ last integral vanishes, i.e. σ(C) = σp(C):

Cu =
∑
m

λm 〈vm|u〉 vm =
∑
m

λm (vm ⊗ vm)u.

If σ(C)c 6= ∅ need generalised eigenvectors vλ
and Gel’fand triplets (rigged Hilbert spaces) for the continuous spectrum:∫

σc(C)

λ dEλu =

∫
σc(C)

λ (vλ ⊗ vλ)u %(dλ).

⇒ Cu =
∑

λm∈σp(C)

λm (vm ⊗ vm)u+

∫
σc(C)

λ (vλ ⊗ vλ)u %(dλ).

Representation as sum / integral of rank-1 operators.
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Singular value decomposition

Another spectral decomposition: C unitarily equiv. to multiplication

operator Mk on L2(X)

C = VMkV
∗ = (VM

1/2
k )(VM

1/2
k )∗, with M

1/2
k = M√k,

spectrum σ(C) is (ess.) range of k : X → R, hence k(x) ≥ 0 a.e. x ∈ X.

This connects to the singular value decomposition (SVD)

of R = SM
1/2
k V ∗, with a (here) unitary S −→ r ∈ U ⊗ L2(X).

With
√
λm sm := Rvm : R =

∑
m

√
λm (vm ⊗ sm) .

A sum / integral of rank-1 operators.
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Model reduction

For purely discrete spectrum we get r ∈ U ⊗Q
r(p) =

∑
m

√
λm sm(p)vm.

This is Karhunen-Loève-expansion, due to SVD −→ r ∈ U ⊗ L2(σ(C)).

A sum of rank-1 operators / tensors. Corresponds to

R∗ =
∑
m

√
λm (sm ⊗ vm) .

Observe that r is linear in the “coordinates”
√
λm sm,

e.g. necessary for offline part in reduced basis method (RBM).

A representation of r, model reduction possible by truncation of sum,

weighted by singular values
√
λm.
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Factorisations / re-parametrisations

R∗ serves as representation. This is a factorisation of C = R∗R.

Some other possible ones:

C = R∗R = (VM
1/2
k )(VM

1/2
k )∗ = C1/2C1/2 = B∗B,

where C = B∗B is an arbitrary one.

Each factorisation leads to a representation—all unitarily equivalent.

(When C is a matrix, a favourite is Cholesky: C = LL∗).

Assume that C = B∗B and B : U → H −→ r ∈ U ⊗H.

Analogous results / factorisations / representations follow from

considering Ĉ := RR∗ : Q → Q.

Also known as kernel decompositions, usually integral transforms.
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Representations

We have seen several ways to represent the solution space

by a—hopefully—simpler space.

These can all be used for model reduction, choosing a smaller subspace.

• The RKHS-representation on R together with R−1.

• The Karhunen-Loève expansion on Q via R∗ (SVD).

• The spectral decomposition over L2(σ(C)) or via VM
1/2
k on L2(X).

• Other multiplicative decompositions, such as C = B∗B on H.

• Analogous: The kernel decompositions and representation based on

kernel κ or Ĉ = RR∗ lead to integral transforms.

Choice depends on what is wanted / needed.

Notion of measure / probability measure on P was not needed.
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Examples and interpretations

• If V is a space of centred RVs, r is a random field / stochastic process

indexed by P, kernel κ(p1, p2) is covariance function.

• If in this case P = Rd and moreover κ(p1, p2) = c(p1− p2) (stationary

process / homogeneous field), then diagonalisation V is real Fourier

transform, typically σp(C) = ∅ ⇒ need Gel’fand triplets.

• If µ is a probability measure on P = Ω (µ(Ω) = 1), and r is a centred

V-valued RV, then C is the covariance operator.

• If P = {1, 2, . . . , n} and R = Rn, then κ is the Gram matrix of the

vectors r1, . . . , rn.

• If P = [0, T ] and r(t) is the response of a dynamical system, then R∗

leads to proper orthogonal decomposition (POD).
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Further decomposition

We have found representations r ∈ W := U ⊗ S, where

S = R, `2,Q, L2(σ(C)), L2(X), L2(Z), . . .

This was only a basic decomposition, as

combinations may occur, so that S = SI ⊗ SII ⊗ SIII ⊗ . . .
Often the problem allows U =

⊗
k Uk, e.g. U = Ux ⊗ Ut.

Or the parameters allow S =
⊗

j Sj.
In case of random fields / stochastic processes

S = L2(Ω) ∼=
⊗

j L2(Ωj) ∼= L2(RN,Γ) ∼=
⊗∞

k=1L2(R,Γ1) . . .

So W = U ⊗ S ∼=
(⊗

j Uj
)
⊗ (
⊗

k SI,k)⊗ (
⊗

m SII,m)⊗ . . .

Example: Ut⊗Ux⊗S1⊗S2 3 v =
∑
i,j,k,m

υk,mi,j ϕi(t)φj(x)Xk(ω1)Xm(ω2).
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Important Points I

• Aim is to replace parameter set P through a vector space S, and to

represent / emulate / generate response surface / surrogate(proxy)

model / (interpolate) approximate r(p).

• A function r : P → U generates linear map R : U → RP
−→ linear functional analysis / RKHS-representation.

• With Hilbert subspace Q ⊂ RP it defines ‘correlation’ C = R∗R

or Ĉ = RR∗ −→ spectral decomposition / SVD / POD.

• Other factorisations C = BB∗ give rise to other representations.

• One may view r ∈ W = U ⊗ S in a tensor product space.

This is both theoretically and computationally advantageous.

• Not necessarily required: (probability) measures.
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Model on Tensor Product

With A(p, u) = f , one finds state u(p) is V-valued function,

it lives in a tensor space W = V ⊗ S.

Variational statement: ∀w = v ⊗ s ∈ W = V ⊗ S:

〈A(·, u(·))− f |w〉W := 〈 〈A(·, u(·))− f | v〉U | s〉S = 0.

May allow to show that problem is well-posed on W = V ⊗ S.

Usual semi-discretisation on finite dimensional VN ⊂ V:

A(p,u(p)) = f , p ∈ P.
Choose {vn}Nn=1 as basis in VN , then u(·) ∈ VN ⊗ S:

u(p) =

N∑
n=1

υn(p)vn.
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Discretisation of Parameter Representation S

Need to discretise (usually infinite dimensional) S ⊂ RP.

Special but important case is when P = (Ω,P) is probability space

and r(p) is a U-valued random variable (RV).

Possible representations / discretisations are:

• Samples: the best known representation, i.e. {r(p1), r(p2), . . .}, e.g.

Monte Carlo {r(ω1), r(ω2), . . .} for RVs.

• Distribution of r in case of RVs (or measure space (P, µ)).

This is the push-forward measure r∗(µ) on U .

• Moments of r in case of RVs, like E
(
r⊗k
)

(mean, covariance, ...).

• Functional representation: function of other (known) functions,

r(p) = r̂(ς1(p), ς2(p), . . .) = r̂(ς). For RV r function of (known) RVs,

e.g. Wiener’s polynomial chaos r(ω) = r̂(θ1(ω)), θ2(ω), . . .) =: r̂(θ).
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Solution by Functional Approximation

Choose finite dimensional subspace SB ⊂ S with basis {Xβ}Bβ=1,

make ansatz for each υn(p) ≈
∑
β u

β
nXβ(p), giving

u(p) =
∑
n,β

uβnXβ(ω)vn =
∑
n,β

uβnXβ(ω)⊗ vn.

Solution is in tensor product WN,B := VN ⊗ SB ⊂ V ⊗ S = W .

Parametric state u(p) represented by tensor u = uBN := {uβn}
β=1,...,B
n=1,...,N ,

determined by Galerkin conditions—weighted residua:

∀Xβ,vn : 〈A(·,u(·))− f |vn ⊗Xβ〉W = 0,

giving A(u) = f .

A large (N ×B) coupled system, but may be solved non-intrusively.
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Discretisation — model reduction

On continuous level discretisation is choice of subspace

WN,B := VN ⊗ SB ⊂ V ⊗ S =: W

and—important for computation—good basis in it.

On discrete level reduced models find sub-manifold WR ⊂ WN,B

with smaller dimensionality dim WR = R� N ×B = dim WN,B.

They can work on SB or VN , or both.

Different approaches to choose reduced model:

• Before solution process (e.g. modal projection, reduced basis method).

• After solution process (essentially data compression).

• During solution, computing solution and reduction simultaneously.

Here we use low-rank approximations: u ≈
∑R
r=1 yr ⊗ gr.
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Use in UQ-MC sampling / colocation I

Example: Compressible RANS-flow around RAE air-foil.

Sample solution

turbulent kinetic energy pressure
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Use in UQ-MC sampling / colocation II

Inflow and air-foil shape uncertain.

Data compression achieved by updated SVD:

Made from 600 samples, SVD is updated every 10 samples.

N = 260, 000 Z = 600

Updated SVD: Relative errors, memory requirements:
rank R pressure turb. kin. energy memory [MB]

10 1.9× 10−2 4.0× 10−3 21

20 1.4× 10−2 5.9× 10−3 42

50 5.3× 10−3 1.5× 10−4 104

Full tensor ∈ R260000×600 would cost 10 GB of storage.
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Use in Galerkin method

Solution process to obtain co-efficients for coupled problem

uk+1 = Φ(uk), u ∈ WN,B := UN ⊗ SB ⊂ U ⊗ S = W

(with contraction % < 1) may be written as tensorised mapping

uk+1 = uk −Ξ(uk) = uk −

(
M∑
m=1

Y m ⊗Gm

)
(uk).

How to find low-rank uR =
∑R
j=1 yj ⊗ gj ∈ WR ⊂ WN,B ⊂ W ?

• PGD—proper generalised decomposition: build uj+1 from uj by e.g.

greedy algorithm (alternating least squares)

alternating solutions on UN and SB.

• low-rank iteration: start with uR0 =
∑R
j=1 y0,j ⊗ g0,j, keep it like that

in iteration (truncated / perturbed iteration saves on computation).
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Perturbed low-rank iteration

u1 =
∑R0
j=1 y0,j ⊗ g0,j −

∑M
m=1Y m(u0)⊗Gm(u0).

Rank of uk+1 grows by M .

Possible for pre-conditioned linear iteration,

and modified-, full-, inexact- and quasi-Newton iteration.

If iteration and rank-truncation Tε are alternated, rank stays low.

ûk+1 = uk −Ξ(uk), uk+1 = Tε(ûk+1) with ‖Tε(v)− v‖ ≤ ε.

Theorem: [Hackbusch, Tyrtyshnikov] super-linearly (or linearly % < 1/2)

originally convergent process converges to stagnation range 2ε.

Theorem: [Zander, HGM] all originally convergent processes converge,

if % > 0 (linear) to stagnation range ε/(1− %).
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Diffusion SPDE and variational form

Solution u(x, ω) is sought in tensor product space

W := V ⊗ S = H̊1(G)⊗ L2(Ω).

Variational formulation: find u ∈ W such that ∀ w = w ⊗ s ∈ W :

a(w, u) := E
(∫
G
∇xw(x, ω) · κ(x, ω) · ∇xu(x, ω) dx

)
= E

(∫
G
w(x, ω)f(x, ω) dx

)
=: 〈〈v, f〉〉.

Lax-Milgram lemma → existence, uniqueness, and well-posedness.

Galerkin discretisation on WB,N = VN ⊗ SB ⊂ V ⊗ S = W leads to

A u =

(
M∑
m=1

ξmAm ⊗∆(m)

)
u = f .

Céa’s lemma → Galerkin converges.
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Example solution
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Iteration accuracy

Convergence of truncated iteration. N ×B ≈ 108 on 2GB Laptop.
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Important points II

• Discretisation may use tensor product.

• Discretised system equation may be written in tensorised form.

• Solver may be represented in tensorised form.

• To view u ∈ W = U ⊗ S in a tensor product space, allows to show

well-posedness and Galerkin convergence.

• Tensor representation allows a sparse approximation of dense

quantities via low-rank approximation.

• Allows large savings in computation and storage.
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Inverse problem—updating

Quantity q(p) ∈ Q is unknown / uncertain, measurement operator

y = Y (q;u) = Y (q, u(f ; q)) for observations z = y+ ε with random error

ε to determine / update q. Function not invertible ⇒ ill-posed problem,

obseravtion z does not contain enough information.

In Bayesian framework state of knowledge modelled in a probabilistic way,

parameters q are uncertain, and assumed as random.

Updating the distribution—state of knowledge of q is well-posed.

Classically, Bayes’s theorem gives conditional probability

P(Iq|Mz) =
P(Mz|Iq)
P(Mz)

P(Iq);

expectation with this posterior measure is conditional expectation.

Modern approach starts from conditional expectation E (·|Mz) on

S = L2(Ω,P,A), from this P(Iq|Mz) = E
(
χIq|Mz

)
.
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Update

Definition: conditional expectation is defined as

orthogonal projection onto the subspace L2(Ω,P, σ(z)):

E(q|σ(z)) := PQnq = argminq̃∈L2(Ω,P,σ(z)) ‖q − q̃‖
2
L2

The subspace Qn := L2(Ω,P, σ(z)) represents the available information,

the estimate minimises the function ‖q − (·)‖2 over Qn.

More general loss functions than mean square error are possible.

The update, also called the assimilated value

qa(ω) := PQnq = E(q|σ(z)), a function of z, is a Q-valued RV

and represents new state of knowledge after the measurement.

⇒ Pythagoras ‖q‖2L2
= ‖q − qa‖2L2

+ ‖qa‖2L2

shows reduction of variance.

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing



33

Case with prior information

Here we have prior information Qf and prior estimate qf(ω) (forecast)

and measurements z generating a subspace Y0 ⊂ Y ,

and via Y a subspace Q0 ⊂ Q.

We now need projection onto Qn = Qf + Q0, with reformulation as an

orthogonal direct sum: Qn = Qf + Q0 = Qf ⊕ (Q0 ∩Q⊥f ) = Qf ⊕Qi.

The update / conditional expectation /

assimilated value is the orthogonal projection

qa = qf + PQi
q = qf + qi,

where qi is the innovation.

How can one compute qa or qi = PQi
q ?
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Simplification

The RV PQi
q is a function of the measurement z.

For simplicity do not consider subspace Q0 generated by

all measurable functions of z, but only linearly generated Q`.

This gives linear minimum variance estimate q̂a.

Theorem: (Generalisation of Gauss-Markov)

q̂a(ω) = qf(ω) +K(z(ω)− yf(ω)),

where the linear Kalman gain operator K : Y → Q is

K := cov(qf , y)
(
cov(y, y) + cov(ε, ε)

)−1
.

(The normal Kalman filter is a special case.)

Or in tensor space q ∈ Q = Q⊗ S—works well for low-rank rep.:

q̂a = qf + (K ⊗ I)(z − yf).
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Update

On semi-discretisation, stochastic discretisation is

I ⊗Π : Qh ⊗ S → Qh ⊗ Sk.
It commutes with K ⊗ I, so the update equation (projection /

conditional expectation) may be projected on the fully discrete space.

With u := [. . . ,uα, . . .] ∈ Qh ⊗ Sk the forward problem is

A(u; q) = f and yf = Y(qf ,S(f ,qf)) ∈ Yh ⊗ Sk.

Update on Qh ⊗ Sk : q̂a = qf + (K ⊗ I)
(
z− yf

)
.

Forward problem and update benefit from low-rank / sparse

approximation, e.g. q ≈
∑
j pj ⊗ sj.
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Example 1: Identification of bi-modal dist

Setup: Scalar RV x with

non-Gaussian bi-modal “truth”

p(x); Gaussian prior; Gaussian

measurement errors.

Aim: Identification of p(x).

10 updates of N = 10, 100, 1000

measurements.
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Example 2: Lorenz-84 chaotic model

Setup: Non-linear, chaotic system

u̇ = f(u), u = [x, y, z]

Small uncertainties in initial

conditions u0 have large impact.

Aim: Sequentially identify state ut.

Methods: PCE representation and

PCE updating and

sampling representation and

(Ensemble Kalman Filter)

EnKF updating.
Poincaré cut for x = 1.
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Example 2: Lorenz-84 PCE representation

PCE: Variance

reduction and shift of

mean at update points.

Skewed structure clearly

visible, preserved by

updates.

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing



39

Example 2: Lorenz-84 non-Gaussian identification

PCE

truth × measurement +

EnKF

posterior prior

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing



40

Example 3: diffusion—schematic representation

  

qA( ,u)

f u=S(q,f)

Y(q,u)

Forward

   (u?)

Inverse
(q?)

z
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Measurement patches
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Convergence plot of updates
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Forecast and Assimilated pdfs
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Example 4: Elasto-plastic plate with hole

Forward problem: the comparison of the mean values of the total

displacement fo r deterministic, initial and stochastic configuration
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Relative variance of shear modulus estimate

Relative RMSE of variance [%] after 4th update in 10% equally

distributed m easurment points
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Probability density shear modulus

Comparison of prior and posterior distribution
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Conclusion

• Parametric models lead to

factorisations / representations in tensor product form.

• Sparse low-rank tensor products save storage and computation in

sampling and functional approximation.

• Works also for non-linear non-Gaussian problems and solvers.

• Bayesian update is a projection, needs no Monte Carlo.

• Compatible with low-rank and spectral representation.

• Works on non-smooth non-Gaussian examples.
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