Parametric Uncertainty Computations with Tensor Product Representations

Hermann G. Matthies

A. Litvinenko, M. Meyer, O. Pajonk, B. Rosić, E. Zander Institute of Scientific Computing, TU Braunschweig Brunswick, Germany

wire@tu-bs.de
http://www.wire.tu-bs.de

\$Id: 10_Paris.tex,v 7.4 2011/08/02 03:21:18 hgm Exp \$

Overview

- 1. Parameter dependent problems
- 2. Decompositions and factorisations
- 3. Formulation in tensor product spaces
- 4. Examples
- 5. Model reduction and sparse representation
- 6. Bayesian updating, inverse problems
- 7. Examples and Conclusion

Mathematical formulation I

Consider operator equation, physical system modelled by A_{i} depending on quantity q: $A(\boldsymbol{q}; u) = f$ $u \in \mathcal{V}, f \in \mathcal{F},$ $\Leftrightarrow \quad \forall v \in \mathcal{V} : \quad a(\mathbf{q}; u; v) = \langle A(\mathbf{q}; u), v \rangle = \langle f, v \rangle,$ \mathcal{V} — space of states, $\mathcal{F} = \mathcal{V}^*$ — dual space of actions / forcings. Variant: $A(\varsigma(q); u) = f$, dependence on a function $\varsigma(q)$, such that parameter $p \in \mathcal{P}$ may be $p = q \mid p = (q, f) \mid p = (q, f, u_0) \mid p = (\varsigma(q), ...) ...$ General formulation—non-linear operator, semi-linear form: $A(p; u) = f \quad \Leftrightarrow \quad \forall v \in \mathcal{V} : \quad a(p; u; v) = \langle A(p; u), v \rangle = \langle f, v \rangle.$ Want to describe $A(p, \cdot)$, f(p), $\varsigma(p)$, or $u(p) \longrightarrow r(p)$. In the end desired quantities of interest (QoI) $\Psi_{\iota}(p, u(p))$.

Problem with parameters—diffusion SPDE

Simple stationary model of groundwater flow with parameters

 $-\nabla \cdot (\kappa(x) \cdot \nabla u(x)) = f(x)$ $x \in \mathcal{G} \subset \mathbb{R}^d$ & b.c.

Parameters from modelling epistemic / aleatoric uncertainty or design.

Specific values of parameter p are realisations of κ , f, or b.c. This involves an infinite (at first sight uncountable) real functions (random variables—RVs)

4

Realisation of κ

A sample realization

Parametric problems

For each p in a parameter set \mathcal{P} , let r(p) be an element in a Hilbert space \mathcal{Z} (for simplicity).

With $r: \mathcal{P} \to \mathcal{Z}$, denote $\mathcal{U} = \overline{\operatorname{span}} r(\mathcal{P}) = \overline{\operatorname{span}} \operatorname{im} r$.

What we are after: other representations of r or $\mathcal{U} = \overline{\operatorname{span}} \operatorname{im} r$.

To each function $r : \mathcal{P} \to \mathcal{U}$ corresponds a linear map $R : \mathcal{U} \to \tilde{\mathcal{R}}$: $R : \mathcal{U} \ni u \mapsto \langle r(\cdot) | u \rangle_{\mathcal{U}} \in \tilde{\mathcal{R}} = \operatorname{im} R \subset \mathbb{R}^{\mathcal{P}}.$

By construction R is injective. Use this to make $\tilde{\mathcal{R}}$ a pre-Hilbert space: $\forall \phi, \psi \in \tilde{\mathcal{R}} : \langle \phi | \psi \rangle_{\mathcal{R}} := \langle R^{-1} \phi | R^{-1} \psi \rangle_{\mathcal{U}}.$

 R^{-1} is unitary on completion \mathcal{R} .

$$\begin{split} \mathcal{R} \text{ is a reproducing kernel Hilbert space} & --\mathsf{RKHS} --\text{ with symmetric kernel} \\ \varkappa(p_1, p_2) &= \langle r(p_1) | r(p_2) \rangle_{\mathcal{U}} \in \mathbb{R}^{\mathcal{P} \times \mathcal{P}}; \qquad \forall p \in \mathcal{P} : \ \varkappa(p, \cdot) \in \mathcal{R}, \\ & \text{ and } \overline{\operatorname{span}} \{ \varkappa(\cdot, p) \mid p \in \mathcal{P} \} = \mathcal{R}. \\ & \text{ Reproducing property:} \\ & \forall \phi \in \mathcal{R} : \ \langle \varkappa(p, \cdot) | \phi(\cdot) \rangle_{\mathcal{R}} = \phi(p). \end{split}$$

In other settings (classification, machine learning, SVM), when different subsets of \mathcal{P} have to be classified, the space \mathcal{U} and the map $r : \mathcal{P} \to \mathcal{U}$ is not given, but can be freely chosen.

It is then called the feature map. The whole procedure is called the kernel trick.

Examples

The function r(p) may be

- function(s) describing some system— A(p; u) = f.
- a random field / process as input to some system— $A(\varsigma(p); u) = f$.
- the solution / state of some system depending on the above— u(p).
- the (non-linear) operator $A(p; \cdot)$ / bi-linear / semi-linear form $a(p; \cdot; \cdot)$ determining some system.

One special case is when the parameter is a random quantity. Methods can be inspired from this model.

Representation on RKHS

In contrast to \mathcal{P} (just some set), \mathcal{R} is a vector space.

Assume that \mathcal{R} is separable, choose complete orthonormal system (CONS) $\{y_m\}_m$ such that $\overline{\text{span}}\{y_1, y_2, \ldots\} = \mathcal{R}$.

Set $u_m = R^{-1}y_m \in \mathcal{U}$ then $r(p) = \sum_m y_m(p)u_m$ (linear in y_m).

We find that $r \in \mathcal{U} \otimes \mathcal{R}$, and $R = \sum_{m} u_m \otimes y_m$ and $R^{-1} = \sum_{m} y_m \otimes u_m$.

But choice of CONS is arbitrary.

Let $Q_{\mathcal{R}} : \ell_2 \ni \mathbf{a} = (a_1, a_2, \ldots) \mapsto \sum_m a_m y_m \in \mathcal{R}$ —a unitary map. Then $R^{-1} \circ Q_{\mathcal{R}}$ (unitary) represents \mathcal{U} , linear in $\mathbf{a} \longrightarrow r \in \mathcal{U} \otimes \ell_2$. We are looking for representations on other vector spaces.

'Correlation'

If there is another inner product $\langle \cdot | \cdot \rangle_{\mathcal{Q}}$ on a subspace $\mathcal{Q} \subset \mathbb{R}^{\mathcal{P}}$, (e.g. if (\mathcal{P}, μ) is measure space, set $\mathcal{Q} := L_2(\mathcal{P}, \mu)$) a linear map $C := R^*R$ —the 'correlation' operator—is defined by $\forall u, v \in \mathcal{U}; \ \langle Cu, v \rangle_{\mathcal{U}' \times \mathcal{U}} = \langle Ru | Rv \rangle_{\mathcal{Q}}; \qquad R^* \text{ w.r.t. } \mathcal{Q}.$ (In case $\mathcal{Q} = L_2(\mathcal{P}, \mu): \qquad C = \int_{\mathcal{P}} r(p) \otimes r(p) \, \mu(\mathrm{d}p)$)

It is self-adjoint and positive definite \rightarrow has spectrum $\sigma(C) \subseteq \mathbb{R}_+$.

Spectral decomposition with projectors $E_{\lambda} \text{ on } \lambda \in \sigma(C) = \sigma_p(C) \cup \sigma_c(C)$ $Cu = \int_0^{\infty} \lambda \, \mathrm{d}E_{\lambda}u = \sum_{\lambda_m \in \sigma_p(C)} \lambda_m \langle v_m | u \rangle_{\mathcal{U}} v_m + \int_{\sigma_c(C)} \lambda \, \mathrm{d}E_{\lambda}u.$

(Assume simple spectrum for simplicity ;-)

Institute of Scientific Computing

Spectral decomposition

Often C has a pure point spectrum (e.g. C or C^{-1} compact) \Rightarrow last integral vanishes, i.e. $\sigma(C) = \sigma_p(C)$:

$$Cu = \sum_{m} \lambda_m \langle v_m | u \rangle v_m = \sum_{m} \lambda_m (v_m \otimes v_m) u.$$

If $\sigma(C)_c \neq \emptyset$ need generalised eigenvectors v_{λ}

and Gel'fand triplets (rigged Hilbert spaces) for the continuous spectrum:

$$\int_{\sigma_c(C)} \lambda \, \mathrm{d}E_\lambda u = \int_{\sigma_c(C)} \lambda \, \left(v_\lambda \otimes v_\lambda \right) u \, \varrho(\mathrm{d}\lambda).$$

$$\Rightarrow \quad Cu = \sum_{\lambda_m \in \sigma_p(C)} \lambda_m \, \left(v_m \otimes v_m \right) u + \int_{\sigma_c(C)} \lambda \, \left(v_\lambda \otimes v_\lambda \right) u \, \varrho(\mathrm{d}\lambda).$$

Representation as sum / integral of rank-1 operators.

11

Another spectral decomposition: C unitarily equiv. to multiplication operator M_k on $L_2(X)$

$$C = V M_k V^* = (V M_k^{1/2}) (V M_k^{1/2})^*, \text{ with } M_k^{1/2} = M_{\sqrt{k}},$$

spectrum $\sigma(C)$ is (ess.) range of $k: X \to \mathbb{R}$, hence $k(x) \ge 0$ a.e. $x \in X$.

This connects to the singular value decomposition (SVD) of $R = SM_k^{1/2}V^*$, with a (here) unitary $S \longrightarrow r \in \mathcal{U} \otimes L_2(X)$.

With
$$\sqrt{\lambda_m} s_m := Rv_m : \qquad R = \sum_m \sqrt{\lambda_m} (v_m \otimes s_m).$$

A sum / integral of rank-1 operators.

Model reduction

For purely discrete spectrum we get $r \in \mathcal{U} \otimes \mathcal{Q}$

$$r(p) = \sum_{m} \sqrt{\lambda_m} \, s_m(p) v_m.$$

This is Karhunen-Loève-expansion, due to SVD $\longrightarrow r \in \mathcal{U} \otimes L_2(\sigma(C))$.

A sum of rank-1 operators / tensors. Corresponds to

$$R^* = \sum_m \sqrt{\lambda_m} \ (s_m \otimes v_m) \,.$$

Observe that r is linear in the "coordinates" $\sqrt{\lambda_m s_m}$, e.g. necessary for offline part in reduced basis method (RBM).

A representation of r, model reduction possible by truncation of sum, weighted by singular values $\sqrt{\lambda_m}$.

Factorisations / re-parametrisations

 R^* serves as representation. This is a factorisation of $C = R^*R$. Some other possible ones:

$$C = R^*R = (VM_k^{1/2})(VM_k^{1/2})^* = C^{1/2}C^{1/2} = B^*B,$$

where $C = B^*B$ is an arbitrary one.

Each factorisation leads to a representation—all unitarily equivalent. (When C is a matrix, a favourite is Cholesky: $C = LL^*$).

Assume that $C = B^*B$ and $B : \mathcal{U} \to \mathcal{H} \longrightarrow r \in \mathcal{U} \otimes \mathcal{H}$.

Analogous results / factorisations / representations follow from considering $\hat{C} := RR^* : \mathcal{Q} \to \mathcal{Q}$.

Also known as kernel decompositions, usually integral transforms.

We have seen several ways to represent the solution space by a—hopefully—simpler space.

These can all be used for model reduction, choosing a smaller subspace.

- The RKHS-representation on \mathcal{R} together with R^{-1} .
- The Karhunen-Loève expansion on Q via R^* (SVD).
- The spectral decomposition over $L_2(\sigma(C))$ or via $VM_k^{1/2}$ on $L_2(X)$.
- Other multiplicative decompositions, such as $C = B^*B$ on \mathcal{H} .
- Analogous: The kernel decompositions and representation based on kernel \varkappa or $\hat{C} = RR^*$ lead to integral transforms.

Choice depends on what is wanted / needed. Notion of measure / probability measure on \mathcal{P} was not needed.

Examples and interpretations

- If \mathcal{V} is a space of centred RVs, r is a random field / stochastic process indexed by \mathcal{P} , kernel $\varkappa(p_1, p_2)$ is covariance function.
- If in this case $\mathcal{P} = \mathbb{R}^d$ and moreover $\varkappa(p_1, p_2) = c(p_1 p_2)$ (stationary process / homogeneous field), then diagonalisation V is real Fourier transform, typically $\sigma_p(C) = \emptyset \Rightarrow$ need Gel'fand triplets.
- If μ is a probability measure on $\mathcal{P} = \Omega$ ($\mu(\Omega) = 1$), and r is a centred \mathcal{V} -valued RV, then C is the covariance operator.
- If $\mathcal{P} = \{1, 2, ..., n\}$ and $\mathcal{R} = \mathbb{R}^n$, then \varkappa is the Gram matrix of the vectors $r_1, ..., r_n$.
- If $\mathcal{P} = [0, T]$ and r(t) is the response of a dynamical system, then R^* leads to proper orthogonal decomposition (POD).

Further decomposition

We have found representations $r \in \mathscr{W} := \mathcal{U} \otimes \mathcal{S}$, where $\mathcal{S} = \mathcal{R}, \ell_2, \mathcal{Q}, L_2(\sigma(C)), L_2(X), L_2(Z), \ldots$

This was only a basic decomposition, as combinations may occur, so that $S = S_I \otimes S_{II} \otimes S_{III} \otimes \ldots$ Often the problem allows $\mathcal{U} = \bigotimes_k \mathcal{U}_k$, e.g. $\mathcal{U} = \mathcal{U}_x \otimes \mathcal{U}_t$.

> Or the parameters allow $S = \bigotimes_j S_j$. In case of random fields / stochastic processes

 $S = L_2(\Omega) \cong \bigotimes_j L_2(\Omega_j) \cong L_2(\mathbb{R}^{\mathbb{N}}, \Gamma) \cong \bigotimes_{k=1}^{\infty} L_2(\mathbb{R}, \Gamma_1) \dots$ So $\mathscr{W} = \mathcal{U} \otimes S \cong \left(\bigotimes_j \mathcal{U}_j\right) \otimes \left(\bigotimes_k \mathcal{S}_{I,k}\right) \otimes \left(\bigotimes_m \mathcal{S}_{II,m}\right) \otimes \dots$ onle: $\mathcal{U} \otimes \mathcal{U} \otimes \mathcal{S}_1 \otimes \mathcal{S}_2 \ni v = \sum_{k=1}^{\infty} v_k^{k,m} \phi(t) \phi(t) \phi(t) X_1(v_1) X_2(v_2)$

Example: $\mathcal{U}_t \otimes \mathcal{U}_x \otimes \mathcal{S}_1 \otimes \mathcal{S}_2 \ni v = \sum_{i,j,k,m} v_{i,j}^{k,m} \varphi_i(t) \phi_j(x) X_k(\omega_1) X_m(\omega_2).$

Important Points I

- Aim is to replace parameter set P through a vector space S, and to represent / emulate / generate response surface / surrogate(proxy) model / (interpolate) approximate r(p).
- A function $r: \mathcal{P} \to \mathcal{U}$ generates linear map $R: \mathcal{U} \to \mathbb{R}^{\mathcal{P}}$
 - \rightarrow linear functional analysis / RKHS-representation.
- With Hilbert subspace $Q \subset \mathbb{R}^{\mathcal{P}}$ it defines 'correlation' $C = R^*R$ or $\hat{C} = RR^* \longrightarrow$ spectral decomposition / SVD / POD.
- Other factorisations $C = BB^*$ give rise to other representations.
- One may view r ∈ W = U ⊗ S in a tensor product space.
 This is both theoretically and computationally advantageous.
- Not necessarily required: (probability) measures.

Model on Tensor Product

With A(p, u) = f, one finds state u(p) is \mathcal{V} -valued function, it lives in a tensor space $\mathscr{W} = \mathcal{V} \otimes \mathcal{S}$. Variational statement: $\forall w = v \otimes s \in \mathscr{W} = \mathcal{V} \otimes \mathcal{S}$: $\langle A(\cdot, u(\cdot)) - f \mid w \rangle_{\mathscr{W}} := \langle \langle A(\cdot, u(\cdot)) - f \mid v \rangle_{\mathscr{U}} \mid s \rangle_{\mathscr{S}} = 0.$ May allow to show that problem is well-posed on $\mathscr{W} = \mathcal{V} \otimes \mathcal{S}$. Usual semi-discretisation on finite dimensional $\mathcal{V}_N \subset \mathcal{V}$: $\boldsymbol{A}(p, \boldsymbol{u}(p)) = \boldsymbol{f}, \qquad p \in \mathcal{P}.$ Choose $\{\boldsymbol{v}_n\}_{n=1}^N$ as basis in \mathcal{V}_N , then $\boldsymbol{u}(\cdot) \in \mathcal{V}_N \otimes \mathcal{S}$: N $\boldsymbol{u}(p) = \sum \upsilon_n(p) \boldsymbol{v}_n.$ n = 1

Need to discretise (usually infinite dimensional) $S \subset \mathbb{R}^{\mathcal{P}}$. Special but important case is when $\mathcal{P} = (\Omega, \mathbb{P})$ is probability space and r(p) is a \mathcal{U} -valued random variable (RV).

Possible representations / discretisations are:

- Samples: the best known representation, i.e. $\{r(p_1), r(p_2), \ldots\}$, e.g. Monte Carlo $\{r(\omega_1), r(\omega_2), \ldots\}$ for RVs.
- Distribution of r in case of RVs (or measure space (\mathcal{P}, μ)). This is the push-forward measure $r_*(\mu)$ on \mathcal{U} .
- Moments of r in case of RVs, like $\mathbb{E}(r^{\otimes k})$ (mean, covariance, ...).
- Functional representation: function of other (known) functions,
 r(p) = r̂(ζ₁(p), ζ₂(p),...) = r̂(ζ). For RV r function of (known) RVs,
 e.g. Wiener's polynomial chaos r(ω) = r̂(θ₁(ω)), θ₂(ω),...) =: r̂(θ).

Solution by Functional Approximation

Choose finite dimensional subspace $S_B \subset S$ with basis $\{X_\beta\}_{\beta=1}^B$, make ansatz for each $v_n(p) \approx \sum_{\beta} u_n^{\beta} X_{\beta}(p)$, giving

$$\boldsymbol{u}(p) = \sum_{n,\beta} \boldsymbol{u}_n^{\beta} X_{\beta}(\omega) \boldsymbol{v}_n = \sum_{n,\beta} \boldsymbol{u}_n^{\beta} X_{\beta}(\omega) \otimes \boldsymbol{v}_n.$$

Solution is in tensor product $\mathscr{W}_{N,B} := \mathcal{V}_N \otimes \mathcal{S}_B \subset \mathcal{V} \otimes \mathcal{S} = \mathscr{W}$.

Parametric state u(p) represented by tensor $\mathbf{u} = \mathbf{u}_N^B := \{u_n^\beta\}_{n=1,...,N}^{\beta=1,...,B}$, determined by Galerkin conditions—weighted residua:

$$\forall X_{\beta}, \boldsymbol{v}_{n} : \quad \langle \boldsymbol{A}(\cdot, \boldsymbol{u}(\cdot)) - \boldsymbol{f} \, | \, \boldsymbol{v}_{n} \otimes X_{\beta} \rangle_{\mathscr{W}} = 0,$$
giving $\mathbf{A}(\mathbf{u}) = \mathbf{f}.$

A large $(N \times B)$ coupled system, but may be solved non-intrusively.

21

Discretisation — model reduction

On continuous level discretisation is choice of subspace $\mathscr{W}_{N,B} := \mathcal{V}_N \otimes \mathcal{S}_B \subset \mathcal{V} \otimes \mathcal{S} =: \mathscr{W}$ and—important for computation—good basis in it.

On discrete level reduced models find sub-manifold $\mathscr{W}_R \subset \mathscr{W}_{N,B}$ with smaller dimensionality $\dim \mathscr{W}_R = R \ll N \times B = \dim \mathscr{W}_{N,B}$. They can work on \mathcal{S}_B or \mathcal{V}_N , or both. Different approaches to choose reduced model:

- Before solution process (e.g. modal projection, reduced basis method).
- After solution process (essentially data compression).
- During solution, computing solution and reduction simultaneously.

Here we use low-rank approximations: $\mathbf{u} \approx \sum_{r=1}^{R} \boldsymbol{y}_r \otimes \boldsymbol{g}^r$.

Use in UQ-MC sampling / colocation I

Example: Compressible RANS-flow around RAE air-foil. Sample solution

turbulent kinetic energy

pressure

Institute of Scientific Computing

Inflow and air-foil shape uncertain. Data compression achieved by updated SVD: Made from 600 samples, SVD is updated every 10 samples. N = 260,000 Z = 600

Updated SVD: Relative errors, memory requirements:

rank R	pressure	turb. kin. energy	memory [MB]
10	1.9×10^{-2}	4.0×10^{-3}	21
20	1.4×10^{-2}	5.9×10^{-3}	42
50	5.3×10^{-3}	1.5×10^{-4}	104

Full tensor $\in \mathbb{R}^{260000 \times 600}$ would cost 10 GB of storage.

Institute of Scientific Computing

Use in Galerkin method

Solution process to obtain co-efficients for coupled problem $\mathbf{u}_{k+1} = \mathbf{\Phi}(\mathbf{u}_k), \quad \mathbf{u} \in \mathscr{W}_{N,B} := \mathcal{U}_N \otimes \mathcal{S}_B \subset \mathcal{U} \otimes \mathcal{S} = \mathscr{W}$

(with contraction $\rho < 1$) may be written as tensorised mapping

$$\mathbf{u}_{k+1} = \mathbf{u}_k - \mathbf{\Xi}(\mathbf{u}_k) = \mathbf{u}_k - \left(\sum_{m=1}^M \mathbf{Y}_m \otimes \mathbf{G}^m\right)(\mathbf{u}_k).$$

How to find low-rank $\mathbf{u}^R = \sum_{j=1}^R y_j \otimes g^j \in \mathscr{W}_R \subset \mathscr{W}_{N,B} \subset \mathscr{W}$?

- PGD—proper generalised decomposition: build \mathbf{u}^{j+1} from \mathbf{u}^j by e.g. greedy algorithm (alternating least squares) alternating solutions on \mathcal{U}_N and \mathcal{S}_B .
- low-rank iteration: start with $\mathbf{u}_0^R = \sum_{j=1}^R \boldsymbol{y}_{0,j} \otimes \boldsymbol{g}^{0,j}$, keep it like that in iteration (truncated / perturbed iteration saves on computation).

Perturbed low-rank iteration

$$\begin{split} \mathbf{u}_1 &= \sum_{j=1}^{R_0} \boldsymbol{y}_{0,j} \otimes \boldsymbol{g}^{0,j} - \sum_{m=1}^{M} \boldsymbol{Y}_m(\mathbf{u}_0) \otimes \boldsymbol{G}^m(\mathbf{u}_0). \\ & \text{Rank of } \mathbf{u}_{k+1} \text{ grows by } M. \\ & \text{Possible for pre-conditioned linear iteration,} \\ & \text{and modified-, full-, inexact- and quasi-Newton iteration.} \end{split}$$

If iteration and rank-truncation T_{ϵ} are alternated, rank stays low.

$$\hat{\mathbf{u}}_{k+1} = \mathbf{u}_k - \mathbf{\Xi}(\mathbf{u}_k), \quad \mathbf{u}_{k+1} = \mathbf{T}_{\epsilon}(\hat{\mathbf{u}}_{k+1}) \quad \text{with} \quad \|\mathbf{T}_{\epsilon}(\mathbf{v}) - \mathbf{v}\| \leq \epsilon.$$

Theorem: [Hackbusch, Tyrtyshnikov] super-linearly (or linearly $\rho < 1/2$) originally convergent process converges to stagnation range 2ϵ .

Theorem: [Zander, HGM] all originally convergent processes converge, if $\rho > 0$ (linear) to stagnation range $\epsilon/(1 - \rho)$.

Diffusion SPDE and variational form

Solution $u(x, \omega)$ is sought in tensor product space $\mathscr{W} := \mathscr{V} \otimes \mathscr{S} = \mathring{H}^1(\mathscr{G}) \otimes L_2(\Omega).$

Variational formulation: find $u \in \mathscr{W}$ such that $\forall w = w \otimes s \in \mathscr{W}$:

$$\begin{aligned} \mathsf{a}(w,u) &:= \mathbb{E}\left(\int_{\mathcal{G}} \nabla_x w(x,\omega) \cdot \kappa(x,\omega) \cdot \nabla_x u(x,\omega) \,\mathrm{d}x\right) \\ &= \mathbb{E}\left(\int_{\mathcal{G}} w(x,\omega) f(x,\omega) \,\mathrm{d}x\right) =: \langle\!\langle v, f \rangle\!\rangle. \end{aligned}$$

Lax-Milgram lemma \rightarrow existence, uniqueness, and well-posedness. Galerkin discretisation on $\mathscr{W}_{B,N} = \mathcal{V}_N \otimes \mathcal{S}_B \subset \mathcal{V} \otimes \mathcal{S} = \mathscr{W}$ leads to

$$\mathbf{A}\mathbf{u} = \left(\sum_{m=1}^{M} \xi_m \mathbf{A}_m \otimes \mathbf{\Delta}^{(m)}\right) \mathbf{u} = \mathbf{f}.$$

Céa's lemma \rightarrow Galerkin converges.

27

Example solution

Iteration accuracy

Convergence of truncated iteration. $N \times B \approx 10^8$ on 2GB Laptop.

Important points II

- Discretisation may use tensor product.
- Discretised system equation may be written in tensorised form.
- Solver may be represented in tensorised form.
- To view u ∈ W = U ⊗ S in a tensor product space, allows to show well-posedness and Galerkin convergence.
- Tensor representation allows a sparse approximation of dense quantities via low-rank approximation.
- Allows large savings in computation and storage.

Quantity $q(p) \in Q$ is unknown / uncertain, measurement operator y = Y(q; u) = Y(q, u(f; q)) for observations $z = y + \varepsilon$ with random error ε to determine / update q. Function not invertible \Rightarrow ill-posed problem, obseravtion z does not contain enough information.

In Bayesian framework state of knowledge modelled in a probabilistic way, parameters q are uncertain, and assumed as random. Updating the distribution—state of knowledge of q is well-posed.

> Classically, Bayes's theorem gives conditional probability $\mathbb{P}(I_q|M_z) = \frac{\mathbb{P}(M_z|I_q)}{\mathbb{P}(M_z)} \mathbb{P}(I_q);$

expectation with this posterior measure is conditional expectation.

Modern approach starts from conditional expectation $\mathbb{E}(\cdot|M_z)$ on $\mathcal{S} = L_2(\Omega, \mathbb{P}, \mathfrak{A})$, from this $\mathbb{P}(I_q|M_z) = \mathbb{E}(\chi_{I_q}|M_z)$.

31

Update

Definition: conditional expectation is defined as orthogonal projection onto the subspace $L_2(\Omega, \mathbb{P}, \sigma(z))$: $\mathbb{E}(q|\sigma(z)) := P_{\mathscr{Q}_n}q = \operatorname{argmin}_{\tilde{q} \in L_2(\Omega, \mathbb{P}, \sigma(z))} \|q - \tilde{q}\|_{L_2}^2$ The subspace $\mathscr{Q}_n := L_2(\Omega, \mathbb{P}, \sigma(z))$ represents the available information, the estimate minimises the function $\|q - (\cdot)\|^2$ over \mathscr{Q}_n . More general loss functions than mean square error are possible.

The update, also called the assimilated value $q_a(\omega) := P_{\mathcal{Q}_n}q = \mathbb{E}(q|\sigma(z))$, a function of z, is a \mathcal{Q} -valued RV and represents new state of knowledge after the measurement.

$$\Rightarrow \mathsf{Pythagoras} \ \|q\|_{L_2}^2 = \|q - q_a\|_{L_2}^2 + \|q_a\|_{L_2}^2$$

shows reduction of variance.

Case with prior information

Here we have prior information \mathscr{Q}_f and prior estimate $q_f(\omega)$ (forecast) and measurements z generating a subspace $\mathscr{Y}_0 \subset \mathscr{Y}$, and via Y a subspace $\mathscr{Q}_0 \subset \mathscr{Q}$. We now need projection onto $\mathscr{Q}_n = \mathscr{Q}_f + \mathscr{Q}_0$, with reformulation as an orthogonal direct sum: $\mathscr{Q}_n = \mathscr{Q}_f + \mathscr{Q}_0 = \mathscr{Q}_f \oplus (\mathscr{Q}_0 \cap \mathscr{Q}_f^{\perp}) = \mathscr{Q}_f \oplus \mathscr{Q}_i$.

The update / conditional expectation / assimilated value is the orthogonal projection

$$q_a = q_f + P_{\mathcal{Q}_i} q = q_f + q_i,$$

where q_i is the innovation.

How can one compute q_a or $q_i = P_{\mathcal{Q}_i}q$?

Institute of Scientific Computing

Simplification

The RV $P_{\mathcal{Q}_i}q$ is a function of the measurement z.

For simplicity do not consider subspace \mathscr{Q}_0 generated by all measurable functions of z, but only linearly generated \mathscr{Q}_ℓ . This gives linear minimum variance estimate \hat{q}_a .

Theorem: (Generalisation of Gauss-Markov)

$$\hat{q}_a(\omega) = q_f(\omega) + K(z(\omega) - y_f(\omega)),$$

where the linear Kalman gain operator $K: \mathscr{Y} \to \mathscr{Q}$ is

$$K := \operatorname{cov}(q_f, y) \big(\operatorname{cov}(y, y) + \operatorname{cov}(\epsilon, \epsilon) \big)^{-1}.$$

(The normal Kalman filter is a special case.) Or in tensor space $q \in \mathscr{Q} = \mathscr{Q} \otimes \mathscr{S}$ —works well for low-rank rep.:

$$\hat{q}_a = q_f + (K \otimes I)(z - y_f).$$

Update

On semi-discretisation, stochastic discretisation is

$$I\otimes\Pi:\mathcal{Q}_h\otimes\mathcal{S}
ightarrow\mathcal{Q}_h\otimes\mathcal{S}_k.$$

It commutes with $K \otimes I$, so the update equation (projection / conditional expectation) may be projected on the fully discrete space.

With
$$\mathbf{u} := [\dots, \boldsymbol{u}^{\alpha}, \dots] \in \mathcal{Q}_h \otimes \mathcal{S}_k$$
 the forward problem is
 $\mathbf{A}(\mathbf{u}; \mathbf{q}) = \mathbf{f}$ and $\mathbf{y}_f = \mathbf{Y}(\mathbf{q}_f, \mathbf{S}(\mathbf{f}, \mathbf{q}_f)) \in \mathcal{Y}_h \otimes \mathcal{S}_k$.
Update on $\mathcal{Q}_h \otimes \mathcal{S}_k$: $\hat{\mathbf{q}}_a = \mathbf{q}_f + (\mathbf{K} \otimes \mathbf{I})(\mathbf{z} - \mathbf{y}_f)$.

Forward problem and update benefit from low-rank / sparse approximation, e.g. $\mathbf{q} \approx \sum_{j} p_{j} \otimes s_{j}$.

Example 1: Identification of bi-modal dist

Setup: Scalar RV x with non-Gaussian bi-modal "truth" p(x); Gaussian prior; Gaussian measurement errors.

Aim: Identification of p(x). 10 updates of N = 10, 100, 1000measurements.

Example 2: Lorenz-84 chaotic model

Setup: Non-linear, chaotic system $\dot{u} = f(u), \ u = [x, y, z]$ Small uncertainties in initial conditions u_0 have large impact.

Aim: Sequentially identify state u_t .

Methods: PCE representation and PCE updating and sampling representation and (Ensemble Kalman Filter) EnKF updating.

Example 2: Lorenz-84 PCE representation

PCE: Variance reduction and shift of mean at update points.

Skewed structure clearly visible, preserved by updates.

-truth ----- $p_5(\mathbf{X}), p_{95}(\mathbf{X}) - - - p_{25}(\mathbf{X}), p_{75}(\mathbf{X})$

 $-p_{50}(\mathbf{X})$

Example 2: Lorenz-84 non-Gaussian identification

PCE

Institute of Scientific Computing

39

Example 3: diffusion—schematic representation

Measurement patches

447 measurement patches

120 measurement patches

239 measurement patches

10 measurement patches

Institute of Scientific Computing

Convergence plot of updates

Forecast and Assimilated pdfs

Example 4: Elasto-plastic plate with hole

Forward problem: the comparison of the mean values of the total displacement fo r deterministic, initial and stochastic configuration

Institute of Scientific Computing

Relative variance of shear modulus estimate

Relative RMSE of variance [%] after 4th update in 10% equally distributed m easurment points

Probability density shear modulus

Institute of Scientific Computing

46

Conclusion

- Parametric models lead to factorisations / representations in tensor product form.
- Sparse low-rank tensor products save storage and computation in sampling and functional approximation.
- Works also for non-linear non-Gaussian problems and solvers.
- Bayesian update is a projection, needs no Monte Carlo.
- Compatible with low-rank and spectral representation.
- Works on non-smooth non-Gaussian examples.

