
Title Slide

“Scientific Computation and the Scientific Method:

a tentative road map for convergence"

Les Hatton

Professor of Forensic Software Engineering
CISM, Kingston University
L.Hatton@kingston.ac.uk

Version 1.1: 28/Jul/2011

IFIP working conference on Uncertainty quantification in scientific computing, Boulder, 1-4 Aug, 2011.

.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

 Popperian deniability

 Some early thoughts

 A tentative model for defect

 Conclusions

Overview

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

 Truth cannot be verified by scientific testing, it can

only be falsified.

 Falsification requires quantification of experimental

error.

 This has been at the heart of scientific progress.

 This process is NOT generally followed in scientific

(or indeed any other kind of) computation.

Popperian deniability

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

 We seek quantification. This means we would like to know

how big the errors in our numerical experiments are.

 Unfortunately, most of what we know concerns how many

defects are present and not how big a problem they cause.

 More than a whiff of chaos

 {int a; b = (a=0) + a; … b can be almost anything.

 14 out of 14 compilers got volatile wrong in a 2008 study

 Undetected array bound violations still with us in 2011 !

 Any engineering technology which relies on somebody

getting it ‘right’ is fundamentally flawed.

The problem with defects

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

 Popperian deniability

 Some early thoughts

 A tentative model for defect

 Conclusions

Overview

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

By 2010 I was reasonably convinced that:

 N-version experiments are exceedingly valuable at highlighting

differences, (for whatever reason), and effective at reducing

those differences. (1994)

 Scientific software is littered with statically detectable faults

which fail with a certain frequency (1997)

 The language does not seem to make much difference. (1999-)

 Defects appear to be fundamentally statistical rather than

predictive, (2005-8)

 Software systems exhibit implementation INdependent

behaviour (2007-10).

Some early thoughts

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Quantification of differences by

N-version (1994)

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Convergence using N-version

 – but to what ?

Before After

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Are defects related to static

complexity ?

 There is little evidence that complexity measures
such as the cyclomatic complexity v(G) are of any
use at all in predicting defects

Defects

Cyclomatic number v(G)
NAG Fortran library over 25 years
(Hopkins and Hatton (2008))

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Is there anything unusual about

‘zero’ defect ?

PCA and endless
rummaging
suggest not. This
may undermine
root-cause
analysis.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Software size distributions

appear power-law in LOC

Smoothed (cdf) data for 21 systems, C, Tcl/Tk and Fortran, combining
603,559 lines of code distributed across 6,803 components, (Hatton

2009, IEEE TSE)

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

 Popperian deniability

 Some early thoughts

 A tentative model for defect

 Conclusions

Overview

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

We are looking for:-

 Language independent behaviour

 Application independent behaviour

 Predicts power-law behaviour in component sizes

 Predicts simple and apparently power-law behaviour in

defect, (observed frequently)

 Makes other testable predictions.

A tentative model

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

What is power-law behaviour ?

Frequency of occurrence ni given by
pi

i

nc
n

This is usually shown as

ipncni ln)ln(ln

which looks like

ln ni

ln i

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

 Question: Does power-law behaviour in component

size establish itself over time as a software system

matures or is it present at the beginning ?

Is power-law behaviour

persistent ?

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Is power-law behaviour

persistent ?

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

 Answer: Power-law behaviour in component size

appears to be present at the beginning of the

software life-cycle.

Is power-law behaviour

persistent ?

 Given that this appears independent of programming

language and application area, can we explain why ?

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

 When we build a system we are making choices
 Choices on functionality

 Choices on architecture

 Choices on programming language(s)

Building systems

 There is a general theory of choice – Shannon

information theory.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

 Software component size - approximate
 Number of lines of code. This is quite dependent on the programming

language, (consider the influence of the pre-processor in C and C++
for example).

Building systems

 Software component size - better
 Based on tokens of a programming language.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

 Tokens of language
 Fixed tokens. You have no choice in these. There are 49 operators

and 32 keywords in ISO C90. Examples include the following in C,

(but also in C++, PHP, Java, Perl …):

{ } [] () if while * + *= == // / , ; :

 Variable tokens. You can choose these. Examples include:-

identifier names, constants, strings

Building systems from tiny

pieces

 Every computer program is made up of

combinations of these, (note also the Boehm-

Jacopini theorem (1966)).

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

A model for emergent power-law size

behaviour using Shannon entropy

Suppose component i in a software system has ti tokens in
all constructed from an alphabet of ai unique tokens.

First we note that)(iaaa vfi

Fixed tokens of a language, {
} [] ; while …

Variable tokens, (id names
and constants)

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

A model for emergent power-law size

behaviour using Shannon entropy

An example from C:

void int () [] { , ;
for = >= -- <=
++ if > -

bubble a N i j t 1 2

void bubble(int a[], int N)
{
 int i, j, t;
 for(i = N; i >= 1; i--)
 {
 for(j = 2; j <= i; j++)
 {
 if (a[j-1] > a[j])
 {
 t = a[j-1]; a[j-1] = a[j]; a[j] = t;
 }
 }
 }
}

Fixed
(18)

Variable
(8)

+

Total
(94)

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

A model for emergent power-law size

behaviour using Shannon entropy

For an alphabet ai the Hartley-Shannon information content
density I’i per token of component i is defined by

)log()log()...log(' ii

t

iiiiii ataaaaIIt i

i

We think of I’i as fixed by the nature of the algorithm we
are implementing.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Consider now building a system

as follows

Consider a general software system of T tokens divided
into M pieces each with ti tokens, each piece having an
externally imposed information content density property I’i
associated with it. Note: no nesting.

1 2 3 ….

ti,I’i

… M

M

i

itT
1

i

M

i

i ItI '
1

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

General mathematical treatment

The most likely distribution of the I’i (= Ii/ti)subject to the
constraints of T and I held constant

M

i

I

I

i
i

i

i

e

e

T

t
p

1

'

'

M

i

itT
1

and i

M

i

i ItI '
1

is

where pi can be considered the probability of piece i
occurring with a share Ii of I. is a constant.

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

General mathematical treatment

However

ii ap ~Giving the
general theorem

)log()log(' ii

i

i

i

i
i aa

t

t

t

I
I

This states that in any software system,
conservation of size and information (i.e. choice) is
overwhelmingly likely to produce a power-law
alphabet distribution. (Think ergodic here).

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

 Note that for small components, the fixed token

overhead is a much bigger proportion of all tokens,

af >>av(i), so

One last little bit of maths

f

f

v
fvfi a

a

ia
aiaa

Q
p

)(
1)(

)(

1

Constant

 For large components, the general rule takes over

ii ap ~

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Application to software systems

So we are looking for the following signature

log pi

log i

ii ap ~

fa

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Some results

Ada C Java

34 million lines of Ada, C, C++,
Fortran, Java, Tcl in 75 systems.

C++

Fortran C Numerical

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

 Suppose there is a constant probability P of making

a mistake on any token. The total number of defects

is then given by di = P.ti Then

Some model predictions

iiii dta
Q

p
)(

1

 So defects will also be distributed according to a

power-law – i.e they will cluster.

This step uses Zipf’s law, Hatton (2009)

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Defect clustering in the NAG Fortran

library (over 25 years)

Defects components XLOC

0 2865 179947

1 530 47669

2 129 14963

3 82 13220

4 31 5084

5 10 1195

6 4 1153

7 3 1025

> 7 5 1867

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Clustering can be exploited:

Conditional probability of

finding defects*

* See, Hopkins and Hatton (2008), http://www.leshatton.org/NAG01_01-08.html

http://www.leshatton.org/NAG01_01-08.html
http://www.leshatton.org/NAG01_01-08.html
http://www.leshatton.org/NAG01_01-08.html

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

 Popperian deniability

 Some early thoughts

 A tentative model for defect

 Conclusions

Overview

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

Conclusions

 Bounding defects is inherently difficult but N versions
(or open source) both seem to offer ways of improving
software agreement but by an unknown amount.

 Static structural relationships with defect appear to be a
blind alley, (cyclomatic complexity …,).

 Defects cluster and this can be exploited.

 Software systems appear to exhibit macroscopic
behaviour independent of implementation or language

 ii ap ~

Copyright Les Hatton, 2011-. Copying freely permitted with acknowledgement

References

My writing site:-

http://www.leshatton.org/

Specifically,

http://www.leshatton.org/variations_2010.html

Thanks for your attention.

http://www.leshatton.org/
http://www.leshatton.org/variations_2010.html

