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The Focus of this Talk

Tools for Reducing Uncertainty when Investigating
Mathematical Models described by Systems of ODEs

“Investigating” – not only “Approximating the Solution”.
1. Sensitivity Analysis - (of solution wrt parameters

defining the problem)
2. Global Error Estimation
3. Estimating the "Conditioning" of a problem

“ODEs” includes IVPs, BVPs, DDEs, DAEs and VIDEs.
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An Effective ODE Solver
Minimum Requirements:

An Accurate Discrete Approximation is not Enough
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An Accurate Continuous Extension is Necessary (aka Dense Output)
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Outline of Talk
Current Scientific Computing Paradigm and its implications:

Acceptability of an approximate solution

Continuous RK Methods provide dense output for ODEs

Defect Error Control for CRK Methods

Measuring or quantifying the Reliability of a CRK Method

Classes of ODE problems that can be Investigated by CRK-based
Methods (IVPs, BVPs, DDEs, DAEs, and VIDEs)

Useful Software Tools for Investigating and quantifying Important
Properties of the Mathematical Model and its Approximate Solution.
(sensitivity analysis, global error estimation, parameter fitting and
condition number estimation.)

Some Numerical Examples

What is Next?

Reducing Uncertainty when Solving ODEs – p.5/30



Scientific Computing Paradigm

Mathematical Modelling in a Problem Solving Environment:

Formulate the mathematical model of the system being
investigated. (The model may involve parameters.)

Approximate the exact solution of this model relative to a
specified accuracy parameter, TOL.

Visualize the approximate solution.

Is the mathematical model well-posed and is the
approximate solution stable? (may involve sensitivity
analysis).
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Implications for ODE Methods

What is an acceptable approximate solution?

An approximate solution must be easy to represent,
display and manipulate.

The accuracy (or quality) of an approximate solution
must be easy to measure and interpret.

What are the implications for an ODE method?

Solver must be easy to invoke –(only need specify those
parameters necessary to define the problem).

A discrete solution is not sufficient (as it is difficult to
visualize and its accuracy is difficult to interpret).

It should have a generic calling sequence so it is easy to
adopt in a PSE.
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Continuous Runge-Kutta Methods

Consider an IVP defined by the system

y′ = f(x, y), y(a) = y0, on [a, b].

A numerical method will introduce a partitioning
a = x0 < x1 < · · · < xN = b and corresponding discrete
approximations y0, y1 · · · yN . The yi’s are usually determined
sequentially.

On step i let zi(x) be the solution of the local IVP:

z′i = f(x, zi(x)), zi(xi−1) = yi−1, on [xi−1, xi].
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CRK methods (cont)

A classical pth-order, s-stage, discrete RK formula determines

yi = yi−1 + hi

s∑
j=1

ωjkj ,

where hi = xi − xi−1 and the jth stage is defined by,

kj = f(xi−1 + hicj , yi−1 + hi

s∑
r=1

ajrkr).

A Continuous extension (CRK) is determined by introducing (s̃ − s)

additional stages to obtain an order p approximation for any x ∈ (xi−1, xi)

ui(x) = yi−1 + hi

s̃∑
j=1

bj(
x − xi−1

hi

)kj ,

where bj(τ) is a polynomial of degree at least p and τ = x−xi−1

hi
.
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CRK methods (cont)

We consider O(hp) extensions, satisfying:

ui(x) = yi−1 + hi

s̃∑
j=1

bj(τ)kj = zi(x) + O(hp+1
i ).

The [ui(x)]Ni=1 define a piecewise polynomial U(x) for x ∈ [x0, xF ].
This is the approximate solution generated by the CRK method.

U(x) ∈ C0[x0, xF ] and will interpolate the underlying discrete RK
values, yi, if bj(1) = ωj for j = 1, 2 · · · s and
bs+1(1) = bs+2(1) = · · · bs̃(1) = 0.

Similarly a simple set of constraints on the d
d τ

(bj(τ)), and requiring
that ks+1 = f(xi, yi), k1 = f(xi−1, yi−1), will ensure U ′(x) interpolates
f(xi, yi), f(xi−1, yi−1) and therefore U(x) ∈ C1[x0, xF ].
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Defect Error Control for CRKs

U(x), the approximate solution, has an associated defect or residual,

δ(x) ≡ f(x, U(x)) − U ′(x) ≡ f(x, ui(x)) − u′

i(x), for x ∈ [xi−1, xi].

It can be shown that, for sufficiently differentiable f ,

δ(x) = G(τ)hp
i + O(hp+1

i ),

G(τ) = q̃1(τ)F1 + q̃2(τ)F2 + · · · + q̃k(τ)Fk,

where the q̃j are polynomials in τ that depend only on the CRK formula
while the Fj are constants (elementary differentials) that depend only on
the problem.

Methods can be implemented to adjust hi in an attempt to ensure that the

maximum magnitude of δ(x) is bounded by TOL. The quality of an approx-

imate solution can then be described in terms of the max of ||δ(x)||/TOL.
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Defect Error Control (cont)

δ(x) = G(τ)hp
i + O(hp+1

i ),

G(τ) = q̃1(τ)F1 + q̃2(τ)F2 + · · · + q̃k(τ)Fk.

As hi → 0 the defect will then look like a linear combination of the
known polynomials q̃j(τ) over [xi−1, xi].

In the special case where k = 1 the shape of the defect will be the
same (as hi → 0) for all problems and all steps. That is, the defect will
almost always ’converge’ to a multiple of q̃1(τ), in which case the
maximum should occur (as hi → 0) at τ = τ∗ where τ∗ is the location
of the local extremum of q̃1(τ). In this case we will refer to the defect
control strategy as Strict Defect Control (SDC).
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Typical Shape of SDC Defects
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Plot of scaled defect vs τ (ie. δ(τ)/δ(τ ∗) vs τ ) for each
step required to solve a typical problem with SDC CRK6 and
TOL = 10−6.
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Cost of Strict Defect Control

pth − order, explicit, discrete RK : yi = yi−1 + hi

s∑
j=1

ωjkj ,

SDC : ũi(x) = yi−1 + hi

s̃∑
j=1

b̃j(τ)kj = zi(x) + O(hp+1
i ).

Formula p s s̃

CRK4 4 4 8

CRK5 5 6 12

CRK6 6 7 15

CRK7 7 9 20

CRK8 8 13 27

Table 1: Cost per step of some SDC-CRK formulas
(Note that s̃ ≈ 2 s.)
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Strict Defect Control

SDC CRKs are not unique (for a given discrete RK formula).
Each SDC-CRK satisfies,

δ(x) = q̃1(τ)F1h
p
i + (q̂1(τ)F̂1 + q̂2(τ)F̂2 + · · · · · · q̂

k̂
(τ)F̂

k̂
)hp+1

i + O(hp+2
i )

Potential Difficulties:

q̃1(τ) may have a large maximum (q̃1(0) = q̃1(1) = 0 and its ‘average’
value must be one).

The q̂j(τ) may be large in magnitude relative to q̃1(τ) (and therefore hi

would have to be small before the estimate is justified). (That is, before
|hiq̂j(τ)| << |q̃1(τ)| .)

|F1| may be zero (or very small) on isolated steps.

For each p we have identified a particular SDC-CRK that minimizes these

difficulties.
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Optimal SDC CRK6
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Figure 1: Plots of q̃1 and q̂2 · · · q̂7 for SDC CRK6. q̃1 is represented

by the solid line and has the highest magnitude.
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Optimal SDC CRK8
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Figure 2: Plots of q̃1 and q̂2 · · · q̂9 for SDC CRK8. q̃1 is represented

by the solid line and has the highest magnitude.
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Quantifying Reliability

Consider two measures of reliability of a CRK method:
How well does the Method control the maximum magnitude of the
defect? We can measure the ratio of the max defect to TOL on each
step and the fraction of steps where this ratio is greater than 1 ?

How well does the Estimate of the max defect reflect its true value?
We can measure both the ratio of the true maximum defect (on a
successful step) to its estimated value and the fraction of attempted
steps where the estimated maximum is within one percent of the true
maximum.

We will use these measures of reliability to demonstrate that SDC error

control can significantly reduce the uncertainty of approximate solutions to

ODE problems.
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Reliability of SDC Methods

We have implemented SDC versions of CRK5, CRK6 and CRK8.

We have run these three methods on the 25 IVP test problems of
DETEST (all non-stiff), at 9 tolerances from 10−1 to 10−9.

We report summaries only. We report two measures of cost: NSTP
and NFCN, two measures of the reliability of the method : DMAX and
Frac-D (max defect and fraction of steps where this exceeded TOL),
and two measures of the reliability of the estimate: R-Max and Frac-G
( maximum ratio of the true maximum defect to the estimate and the
fraction of steps where this was bounded by 1.01).
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Numerical Results for SDC CRKs

Results on the 25 DETEST Problems for SDC5, SDC6 and SDC8

TOL CRK NSTP NFCN DMAX Frac-D R-Max Frac-G

SDC5 625 11709 0.97 .000 1.05 .67

10−2 SDC6 549 12300 1.00 .000 1.43 .71

SDC8 333 12793 1.01 .003 1.65 .35

SDC5 1065 19033 1.01 .001 1.12 .78

10−4 SDC6 931 19819 1.00 .001 1.08 .87

SDC8 465 17319 1.05 .004 1.47 .45

SDC5 2099 35703 1.01 .002 1.08 .86

10−6 SDC6 1748 35073 1.01 .001 1.08 .96

SDC8 712 26253 1.02 .001 1.34 .59

SDC5 4566 66937 1.01 .001 1.07 .95

10−8 SDC6 3547 65148 1.01 .001 1.07 .98

SDC8 1081 38251 1.12 .007 2.60 .62
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SDC-CRK based methods developed for

IVPs:

y′ = f(x, y), y(a) = y0, x ∈ [a, b],

where y, y0 ∈ <n and f : < × <n → <n.

BVPs:

y′ = f(x, y), x ∈ [a, b],

with

g(y(a), y(b)) = 0, g : <n × <n → <n.

DAEs (with low index):

F (x, y, y′) = 0, y(x) ∈ <n, y(a) = y0,

for x ∈ [a, b]. With ∂F
∂y′

singular but of constant rank in some
neighborhood of y(x).
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Classes of ODEs (cont)
DDEs (both retarded and neutral problems):

y′ = f(x, y(x), y(x − σ1) · · · y(x − σk), y′(x − σk+1),

· · · y′(x − σk+`)), for x ∈ [a, b],

where y(x) ∈ <n and,
y(x) = φ(x), y′(x) = φ′(x), for x ≤ a,

σi ≡ σi(x, y(x)) ≥ 0 for i = 1, 2 · · · k + `.

VIDEs (with a time dependent delay):

y′(x) = f(x, y(x)) +

∫ x

x−σ(x)

K(x, s, y(s), y′(s))ds,(1)

for x ∈ [a, b], f : <× <n → <n and K : <× <×<n ×<n → <n and
y(x) = φ(x) for x ≤ a.
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Effective Tools for Investigating ODEs

For each Class of ODEs we can develop a CRK method and define an
associated defect of the approximate solution. For these methods we are
implementing effective tools for:

Estimating the Global Error

Detecting, Locating and Coping with Discontinuous Problems

Estimating the Conditioning of the Problem

Sensitivity analysis of the Problem (eg., ∂yi(x)
∂pj

)

Solving Problems which depend on parameters (parameter
continuation and/or parameter fitting – an inverse problem)
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Global Error Estimates for IVPs

Cost is comparable to that of computing U(x). We will
consider a typical IVP test problem:
Predator – Prey Problem:

y′1 = y1 − 0.1y1y2 + 0.02x,

y′2 = −y2 + 0.02y1y2 + 0.008x,

with y1(0) = 30, y2(0) = 20, and x ∈ [0, 40].
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Quality of the Global Error Estimate

For each SDC method we monitor performance of the GE
estimate over a range of tolerances and report the following:

NS – The number of steps to determine U(x).

DEFUM – The maximum magnitude of the defect δ(x),
(associated with U(x)), in units of TOL.

G-ESTM – The maximum value of the global error
estimate associated with U(x) in units of TOL.

G-ERRM – The maximum global error associated with
U(x) in units of TOL.
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SDC on pred-prey problem
Method TOL : 10

−2
10
−4

10
−6

10
−8

SDC5: NS 70 148 315 705

DEFUM 1.8 1.1 1.2 1.2

G-ESTM 3.7 7.3 11.4 14.6

G-ERRM 3.7 7.3 11.4 14.4

SDC6: NS 65 134 277 585

DEFUM 1.3 1.0 1.0 1.2

G-ESTM 2.2 4.6 2.5 3.6

G-ERRM 2.2 4.6 2.5 3.5

SDC8: NS 34 53 83 127

DEFUM 1.3 1.1 0.9 2.1

G-ESTM 9.5 6.1 6.1 13.9

G-ERRM 9.5 6.1 6.1 14.4

Reliability of Error Control and Global Error Estimate
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The Next Steps

1. Implement a CRK for an implicit Runge-Kutta method
that is suitable for stiff equations.

(a) The additional RK stages can be explicit and SDC
methods can be developed.

(b) Requiring
max

x∈[xi−1,xi]
||δ(x)|| ≤ TOL

may be too strong.

2. Multiple Shooting for BVPs based on CRK IVP methods.

3. Parameter fitting and sensitivity analysis for IVPs and
DDEs arising in Chemical Kinetics and Biochemical
simulations.
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Implementation for DDEs

In his PhD thesis, Hossein Zivaripiran [University of Toronto, 2009] began
the implementation of a PSE (DDEM) for the investigation of DDEs. (see
http://www.cs.utoronto.ca/˜hzp).
DDEM includes modules for:

1. Accurate location of all significant discontinuities.

2. Reliable simulation and visualization of a problem.

3. Efficient solution of the discrete approximations when delay is small or
the underlying discrete RK formula is implicit.

4. Reliable approximation of first order sensitivities. (No other method we
know of can do this.)

5. Parameter fitting from noisy data (using a “nonsmooth Newton”
approach to achieve superlinear convergence.
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Example: Parameter Fitting for DDEs
Consider the Kermack-McKendrick model of an infectious disease with
periodic outbreaks:

y′

1 = −y1(x)y2(x − σ) + y2(x − ρ),

y′

2 = y1(x)y2(x − σ) − y2(x),

y′

3 = y2(x) − y2(x − ρ),

with x ∈ [0, 55], and y1(x) = 5.0, y2(x) = 0.1, y3(x) = 1.0, for x ≤ 0.

The exact solution to this problem is unknown. Each delay introduces a C2

discontinuity in the objective function whenever it is evaluated at a multi-

ple of σ or ρ. We generate the data to be "fit" by computing an accurate

solution with parameter values, σ∗ = 1 and ρ∗ = 10. We perturb these

values by up to a 10% random perturbation to determine our initial guess

for each parameter and we use 10 equally spaced sample points to define

the prescribed data to be fit.
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Parameter Fitting Results

Newton Jac FCN ITER TIME OBJ

DivDiff 783092 393.2 54.9 7.4·10
−13

SenJac 37344 13.8 2.3 1.3·10
−9

ConSenJac 5293 2.1 0.31 1.3·10−9

We report the total number of derivative evaluations FCN, The number of Newton iterations

ITER, and the CPU time TIME (each averaged over 10 runs) for solving this problem with

standard divided differences used to approximate the Newton Jacobian (DivDiff); with the

Newton Jacobian approximated using an accurate Sensitivity Analysis (SenJac); and with

the Newton Jacobian approximated using a constrained Newton step (ConSenJac). We also

report the value of the objective function OBJ at the computed optimum point.
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