

Overview of Uncertainty Quantification Algorithm R&D in the DAKOTA Project

Michael S. Eldred

Optimization and Uncertainty Quantification Dept.

Sandia National Laboratories, Albuquerque, NM

NIST UQ Workshop Boulder, CO; August 1-4, 2011

Survey of nonintrusive UQ methods:

Sampling

Local and global reliability

Stochastic expansions: polynomial chaos, stochastic collocation

Build on these algorithmic foundations:

Mixed aleatory-epistemic UQ, Opt/model calibration under uncertainty

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Uncertainty Quantification Algorithms @ SNL: New methods bridge robustness/efficiency gap

	Production	New	Under dev.	Planned	Collabs.
Sampling	Latin Hypercube, Monte Carlo	Importance, Incremental		Bootstrap, Jackknife	FSU
Reliability	<i>Local:</i> Mean Value, First-order & second-order reliability methods (FORM, SORM)	<i>Global:</i> Efficient global reliability analysis (EGRA)	gradient- enhanced	recursive emulation, TGP	<i>Local:</i> Notre Dame, <i>Global:</i> Vanderbilt
Stochastic expansion		PCE and SC with uniform & dimension-adaptive p-/h-refinement	local h- refinement, gradient- enhanced	hp-adaptive, discrete, multi- physics	Stanford, Purdue, Austr. Natl., FSU
Other probabilistic		Random fields/ stochastic proc.		Dimension reduction	Cornell, Maryland
Epistemic	Interval-valued/ Second-order prob. (nested sampling)	Opt-based interval estimation, Dempster-Shafer	Bayesian	Imprecise probability	LANL, UT Austin
Metrics & Global SA	Importance factors, Partial correlations	Main effects, Variance-based decomposition	Stepwise regression		LANL

Uncertainty Quantification Algorithms @ SNL: New methods bridge robustness/efficiency gap

	Production	New	Under dev.	Planned	Collabs.	
Sampling	Latin Hypercube, Monte Carlo	Importance, Incremental		Bootstrap, Jackknife	FSU	
Reliability	<i>Local:</i> Mean Value, First-order & second-order	<i>Global:</i> Efficient global reliability analysis (EGRA)	gradient- enhanced	recursive emulation, TGP	<i>Local:</i> Notre Dame, <i>Global:</i>	
	reliability methods (FORM, SORM)	Research: Adaptiv	Vanderbilt			
Stochastic expansion	Adv. Deployment	PCE and SC with uniform & dimension-adaptive p-/h-refinement	local h- refinement, gradient- enhanced	hp-adaptive, discrete, multi- physics	Stanford, Purdue, Austr. Natl., FSU	
Other probabilistic		Random fields/ stochastic proc.		Dimension reduction	Cornell, Maryland	
Epistemic	Interval-valued/ Second-order prob. (nested sampling)	Opt-based interval estimation, Dempster-Shafer	Bayesian	Imprecise probability	LANL, UT Austin	
Metrics & Global SA	Importance factors, Partial correlations	Main effects, Variance-based decomposition	Stepwise regression		LANL	

Algorithm R&D in Adaptive UQ

Drivers

- Efficient/robust/scalable core → adaptive methods, adjoint enhancement
- Complex random environments → epistemic/mixed UQ, model form/multifidelity, RF/SP, multiphysics/multiscale

Stochastic expansions:

- <u>Polynomial chaos expansions (PCE)</u>: known basis, compute coeffs
- Stochastic collocation (SC): known coeffs, form interpolants
- Adaptive approaches: emphasize key dimensions
 - Uniform/dim-adaptive p-refinement: iso/aniso/generalized sparse grids
 - Dimension-adaptive h-refinement with grad-enhanced interpolants
- Sparse adaptive global methods: scale as m^{log r} with r << n

EGRA:

- Adaptive GP refinement for tail probability estimation
- Accuracy similar to exhaustive sampling at cost similar to local reliability assessment
- Global method that scales as ~n²

Sampling:

- Importance sampling (adaptive refinement)
- Incremental MC/LHS (uniform refinement)

Algorithm R&D in UQ Complexity

Drivers

- Efficient/robust/scalable core \rightarrow adaptive methods, adjoint enhancement
- Complex random env. → mixed UQ, model form/multifidelity, RF/SP, multiphysics/multiscale

Stochastic sensitivity analysis

Aleatory or combined expansions including nonprobabilistic dimensions s
 → sensitivities of moments w.r.t. design and/or epistemic parameters

Design and Model Calibration Under Uncertainty

Mixed Aleatory-Epistemic UQ

• SOP, IVP, and DSTE approaches that are more accurate and efficient than traditional nested sampling

Random Fields / Stochastic Processes (Encore, PECOS)

Multiphysics (multiscale) UQ:

Invert UQ & multiphysics loops → transfer UQ stats among codes

Bayesian Inference:

Collaborations w/ LANL (GPM), UT (Queso), Purdue/MIT (gPC)

Model form:

• Multifidelity UQ (hierarchy), model averaging/selection (ensemble)

Reliability Methods for UQ

UQ with Reliability Methods

Reliability Algorithm Variations

Limit state approximations

AMV:
$$g(\mathbf{x}) = g(\mu_{\mathbf{x}}) + \nabla_x g(\mu_{\mathbf{x}})^T (\mathbf{x} - \mu_{\mathbf{x}})$$

u-space AMV: $G(\mathbf{u}) = G(\mu_{\mathbf{u}}) + \nabla_u G(\mu_{\mathbf{u}})^T (\mathbf{u} - \mu_{\mathbf{u}})$
AMV+: $g(\mathbf{x}) = g(\mathbf{x}^*) + \nabla_x g(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*)$
u-space AMV+: $G(\mathbf{u}) = G(\mathbf{u}^*) + \nabla_u G(\mathbf{u}^*)^T (\mathbf{u} - \mathbf{u}^*)$
FORM: no linearization

• 2nd-order local, e.g. x-space AMV²+:

$$g(\mathbf{x}) \cong g(\mathbf{x}^*) + \nabla_x g(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*) + \frac{1}{2} (\mathbf{x} - \mathbf{x}^*)^T \nabla_x^2 g(\mathbf{x}^*) (\mathbf{x} - \mathbf{x}^*)$$

- Hessians may be full/FD/Quasi
- Quasi-Newton Hessians may be BFGS or SR1

Reliability Algorithm Variations

Limit state approximations

Warm starting (with projections)

When: AMV+ iteration increment, $z/p/\beta$ level increment, or design variable change *What:* linearization point & assoc. responses (AMV+), MPP search initial guess

Sandia

Nationa

Reliability Algorithm Variations: Algorithm Performance Results

Analytic benchmark test problems: lognormal ratio, short column, cantilever

RIA Approach	SQP Function Evaluations	NIP Function Evaluations	CDF p Error Norm	Target z Offset Norm	PMA Approach	SQP Function Evaluations	NIP Function Evaluations	CDF z Error Norm	Target p Offset Norm
MVFOSM	1	1	0.1548	0.0	MVFOSM	1	1	7.454	0.0
MVSOSM	1	1	0.1127	0.0	MVSOSM	1	1	6.823	0.0
x-space AMV	45	45	0.009275	18.28	x-space AMV	45	45	0.9420	0.0
u-space AMV	45	45	0.006408	18.81	u-space AMV	45	45	0.5828	0.0
x-space AMV ²	45	45	0.002063	2.482	x-space AMV^2	45	45	2.730	0.0
u-space AMV^2	45	45	0.001410	2.031	u-space AMV^2	45	45	2.828	0.0
x-space AMV+	192	192	0.0	0.0	x-space AMV+	171	179	0.0	0.0
u-space AMV+	207	207	0.0	0.0	u-space AMV+	205	205	0.0	0.0
x-space $AMV^2 +$	125	131	0.0	0.0	x-space AMV^2 +	135	142	0.0	0.0
u-space $AMV^2 +$	122	130	0.0	0.0	u-space AMV^2 +	132	139	0.0	0.0
x-space TANA	245	246	0.0	0.0	x-space TANA	293*	272	0.04259	1.598e-4
u-space TANA	296^{*}	278*	6.982e-5	0.08014	u-space TANA	325*	311^{*}	2.208	5.600e-4
FORM	626	176	0.0	0.0	FORM	720	192	0.0	0.0
SORM	669	219	0.0	0.0	SORM	535	191*	2.410	6.522e-4

Note: 2nd-order PMA with prescribed *p* level is harder problem \rightarrow requires $\beta(p)$ update/inversion

Solution-Verified Reliability Analysis and Design of MEMS

- Problem: MEMS subject to substantial variabilities
 - Material properties, manufactured geometry, residual stresses
 - Part yields can be low or have poor durability
 - Data can be obtained \rightarrow aleatory UQ \rightarrow probabilistic methods
- Goal: account for both uncertainties and errors in design
 - Integrate UQ/OUU (DAKOTA), ZZ/QOI error estimation (Encore), adaptivity (SIERRA), nonlin mech (Aria) \rightarrow MESA application
 - Perform soln verification in automated, parameter-adaptive way
 - Generate fully converged UQ/OUU results at lower cost

- Issue: high nonlinearity leading to multiple legitimate MPP solns.
- Challenge: design optimization may tend to seek out regions encircled by the failure domain. 1st-order and even 2nd-order probability integrations can experience difficulty with this degree of nonlinearity. Optimizers can/will exploit this model weakness.

 $F_{min}(\Delta W, S_r)$

-3

-4

-5

Efficient Global Reliability Analysis (EGRA)

Address known failure modes of local reliability methods:

- Nonsmooth: fail to converge to an MPP
- Multimodal: only locate one of several MPPs
- Highly nonlinear: low order limit state approxs. fail to accurately estimate probability at MPP

Based on EGO (surrogate-based global opt.), which exploits special features of GPs

- Mean and variance predictions: formulate expected improvement (EGO) or expected feasibility (EGRA)
- Balance explore and exploit in computing an optimum (EGO) or locating the limit state (EGRA)

LHS solution 1M x-space EGRA 35.1 u-space EGRA 35.2

80

60

40

20

-20

-40

-60 -80

GRA 35.2

0.03134 (0.155%, 0.433%)

0.03133 (0.136%, 0.296%)

Stochastic Expansion Methods for UQ

Polynomial Chaos Expansions (PCE)

Approximate response w/ spectral proj. using orthogonal polynomial basis fns

i.e.
$$R = \sum_{j=0}^{P} \alpha_j \Psi_j(\boldsymbol{\xi})$$

$$\begin{array}{rcl} \Psi_0(\boldsymbol{\xi}) &=& \psi_0(\xi_1) \ \psi_0(\xi_2) &=& 1 \\ \Psi_1(\boldsymbol{\xi}) &=& \psi_1(\xi_1) \ \psi_0(\xi_2) &=& \xi_1 \\ \Psi_2(\boldsymbol{\xi}) &=& \psi_0(\xi_1) \ \psi_1(\xi_2) &=& \xi_2 \\ \Psi_3(\boldsymbol{\xi}) &=& \psi_2(\xi_1) \ \psi_0(\xi_2) &=& \xi_1^2 - 1 \\ \Psi_4(\boldsymbol{\xi}) &=& \psi_1(\xi_1) \ \psi_1(\xi_2) &=& \xi_1\xi_2 \\ \Psi_5(\boldsymbol{\xi}) &=& \psi_0(\xi_1) \ \psi_2(\xi_2) &=& \xi_2^2 - 1 \end{array}$$

• Nonintrusive: estimate α_j using sampling, regression, tensor-product quadrature, sparse grids, or cubature

using

$$\begin{array}{lll} \alpha_{j} & = & \displaystyle \frac{\langle R, \Psi_{j} \rangle}{\langle \Psi_{j}^{2} \rangle} & = & \displaystyle \frac{1}{\langle \Psi_{j}^{2} \rangle} \int_{\Omega} R \, \Psi_{j} \, \varrho(\boldsymbol{\xi}) \, d\boldsymbol{\xi} \\ \\ \\ & \\ \hline \langle \Psi_{j}^{2} \rangle \, = & \displaystyle \prod_{i=1}^{n} \langle \psi_{m_{i}^{j}}^{2} \rangle \end{array}$$

Generalized PCE (Wiener-Askey + numerically-generated)

• Tailor basis: selection of basis orthogonal to input PDF avoids additional nonlinearity

Distribution	Density function	Polynomial	Weight function	Support range	10
Normal	$\frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$	Hermite $He_n(x)$	$e^{\frac{-x^2}{2}}$	$[-\infty,\infty]$	
Uniform	$\frac{1}{2}$	Legendre $P_n(x)$	1	[-1, 1]	10
Beta	$\frac{(1-x)^{\alpha}(1+x)^{\beta}}{2^{\alpha+\beta+1}B(\alpha+1,\beta+1)}$	Jacobi $P_n^{(\alpha,\beta)}(x)$	$(1-x)^{\alpha}(1+x)^{\beta}$	[-1,1]	
Exponential	e^{-x}	Laguerre $L_n(x)$	e^{-x}	$[0,\infty]$	01 ng
Gamma	$\frac{x^{\alpha}e^{-x}}{\Gamma(\alpha+1)}$	Generalized Laguerre $L_n^{(\alpha)}(x)$	$x^{lpha}e^{-x}$	$[0,\infty]$	Resid

Additional bases generated numerically (discretized Stieltjes + Golub-Welsch)

- Tailor expansion form:
 - Dimension p-refinement: anisotropic TPQ/SSG, generalized SSG
 - Dimension & region h-refinement: local bases with global & local refinement

Stochastic Collocation (based on interpolation polynomials)

Instead of estimating coefficients for known basis functions, form <u>interpolants</u> for known coefficients

- Global: Lagrange (values) or Hermite (values+derivatives)
- Local: linear (values) or cubic (values+gradients) splines

$$R(\boldsymbol{\xi}) \cong \sum_{j_1=1}^{m_{i_1}} \cdots \sum_{j_n=1}^{m_{i_n}} r\left(\xi_{j_1}^{i_1}, \dots, \xi_{j_n}^{i_n}\right) \left(L_{j_1}^{i_1} \otimes \cdots \otimes L_{j_n}^{i_n}\right)$$

Sparse interpolants formed using $\boldsymbol{\Sigma}$ of tensor interpolants

Advantages relative to PCE:

- Somewhat simpler (no expansion order to manage separately)
- Often less expensive (no integration for coefficients)
- Expansion only formed for sampling → probabilities (estimating moments of any order is straightforward)
- · Adaptive h-refinement with hierarchical surpluses; explicit gradient-enhancement

Disadvantages relative to PCE:

- Less flexible/fault tolerant → structured data sets (tensor/sparse grids)
- Expansion variance not guaranteed positive (important in opt./interval est.)
- · No direct inference of spectral decay rates

With sufficient care on PCE form, PCE/SC performance is essentially identical for many cases of interest (tensor/sparse grids with standard Gauss rules)

Approaches for forming PCE/SC Expansions

Adaptive Collocation Methods

Drivers: Efficiency, robustness, <u>scalability</u> → adaptive methods, adjoint enhancement *Polynomial order (p-) refinement approaches:*

- Uniform: *isotropic* tensor/sparse grids
 - Increment grid: increase order/level, ensure change (restricted growth in nested rules)
 - Assess convergence: L² change in response covariance

Adaptive Collocation Methods

Drivers: Efficiency, robustness, <u>scalability</u> → adaptive methods, adjoint enhancement *Polynomial order (p-) refinement approaches:*

- Uniform: *isotropic* tensor/sparse grids
 - Increment grid: increase order/level, ensure change (restricted growth in nested rules)
 - Assess convergence: L² change in response covariance
- **Dimension-adaptive:** <u>anisotropic</u> tensor/sparse grids
 - **PCE/SC:** variance-based decomp. \rightarrow total Sobol' indices \rightarrow anisotropy (dimension preference)
 - PCE: spectral coefficient decay rates → anisotropy (index set weights)

Adaptive Collocation Methods

Drivers: Efficiency, robustness, <u>scalability</u> → adaptive methods, adjoint enhancement Polynomial order (p-) refinement approaches:

- **Uniform:** *isotropic* tensor/sparse grids
 - *Increment grid:* increase order/level, ensure change (restricted growth in nested rules)
 - Assess convergence: L² change in response covariance
- Dimension-adaptive: <u>anisotropic</u> tensor/sparse grids $|w\gamma < \mathbf{i} \cdot \gamma \leq w\gamma + |\gamma|$
 - **PCE/SC:** variance-based decomp. \rightarrow total Sobol' indices \rightarrow anisotropy
 - **PCE:** spectral coefficient decay rates \rightarrow anisotropy
- **Goal-oriented dimension-adaptive:** generalized sparse grids
 - PCE/SC: change in QOI induced by trial index sets on active front

1. Initialization: Starting from reference grid (often w = 0 grid), define active index sets using admissible forward neighbors of all old index sets.

2. Trial set evaluation: For each trial index set. evaluate tensor grid, form tensor expansion, update combinatorial coefficients, and combine with reference expansion. Perform necessary bookkeeping to allow efficient restoration.

3. Trial set selection: Select trial index set that induces largest change in statistical QOI.

4. Update sets: If largest change > tolerance, then promote selected trial set from active to old and compute new admissible active sets; return to 2. If tolerance is satisfied, advance to step 5.

5. Finalization: Promote all remaining active sets to old set, update combinatorial coefficients, and perform final combination of tensor expansions to arrive at final result for statistical QOI.

Numerical Experiments

Extend Scalability through Adjoint Derivative-Enhancement

<u> PCE:</u>

- Linear regression with derivatives
 - Gradients/Hessians → addtnl. eqns.

<u>SC:</u>

- Gradient-enhanced interpolants
 - Local: cubic Hermite splines
 - Global: Hermite interpolation polynomials

EGRA:

- Gradient-enhanced kriging/cokriging
 - Interpolates function values and gradients
 - Scaling: $n^2 \rightarrow n$

Gradient-Enhanced PCE

Straightforward regression approach:

- unweighted LLS by SVD (LAPACK GELSS)
- equality constrained LLS by QR (LAPACK GGLSE) when underdetermined by values alone

Vandermonde-like systems known to suffer from ill-conditioning

Dimension-adaptive h-refinement with gradient-enhanced interpolants

Dimension-adaptive h-refinement for SC:

- Local spline interpolants: linear Lagrange (value-based), cubic Hermite (gradient-enhanced)
- Global grids: iso/aniso tensor, iso/aniso/generalized sparse
- *h-refinement:* uniform, adaptive, goal-oriented adaptive
- Basis formulations: nodal, hierarchical

Multivariate tensor product to arbitrary derivative order (Lalescu):

$$s^{(n)}(x_1, x_2, \dots, x_D) = \sum_{l_1, \dots, l_D=0}^m \sum_{i_1, \dots, i_D=0, 1} f^{(l_1, \dots, l_D)}(i_1, \dots, i_D) \prod_{k=1}^D \alpha_{i_k}^{(n, l_k)}(x_k)$$

$$f = \sum_{i=1}^{N} f_i H_i^{(1)}(x_1) H_i^{(1)}(x_2) H_i^{(1)}(x_3) + \\\sum_{i=1}^{N} \frac{df_i}{dx_1} H_i^{(2)}(x_1) H_i^{(1)}(x_2) H_i^{(1)}(x_3) + \\\sum_{i=1}^{N} \frac{df_i}{dx_2} H_i^{(1)}(x_1) H_i^{(2)}(x_2) H_i^{(1)}(x_3) + \\\sum_{i=1}^{N} \frac{df_i}{dx_3} H_i^{(1)}(x_1) H_i^{(1)}(x_2) H_i^{(2)}(x_3)$$

and similar for higher-order moments

Cubic shape fns: type 1 (value) & type 2 (gradient)

Build on efficient/scalable UQ core

Stochastic sensitivity analysis

Aleatory or combined expansions including nonprobabilistic dimensions s
 → sensitivities of moments w.r.t. design and/or epistemic parameters

$$R(\boldsymbol{\xi}, \boldsymbol{s}) = \sum_{j=0}^{P} \alpha_{j} \Psi_{j}(\boldsymbol{\xi}, \boldsymbol{s}) \begin{cases} \frac{d\mu_{R}}{ds} = \langle \frac{dR}{ds} \rangle \\ \frac{d\sigma_{R}^{2}}{ds} = 2\sum_{j=1}^{P} \alpha_{j} \langle \frac{dR}{ds}, \Psi_{j} \rangle \end{cases} R(\boldsymbol{\xi}, \boldsymbol{s}) = \sum_{j=0}^{P} \alpha_{j}(\boldsymbol{s}) \Psi_{j}(\boldsymbol{\xi}) \begin{cases} \mu_{R}(\boldsymbol{s}) = \sum_{j=0}^{P} \alpha_{j} \langle \Psi_{j}(\boldsymbol{\xi}, \boldsymbol{s}) \rangle_{\boldsymbol{\xi}} \\ \sigma_{R}^{2}(\boldsymbol{s}) = \sum_{j=0}^{P} \sum_{k=0}^{P} \alpha_{j} \alpha_{k} \langle \Psi_{j}(\boldsymbol{\xi}, \boldsymbol{s}) \Psi_{k}(\boldsymbol{\xi}, \boldsymbol{s}) \rangle_{\boldsymbol{\xi}} - \mu_{R}^{2}(\boldsymbol{s}) \end{cases}$$

Design and Model Calibration Under Uncertainty

Mixed Aleatory-Epistemic UQ

- Approaches that are more accurate/efficient than nested sampling
 - Interval-valued probability (IVP), aka PBA
 - Dempster-Shafer theory of evidence (DSTE)
 - Second-order probability (SOP), aka PoF

Increasing epistemic structure (stronger assumptions)

Mixed Aleatory-Epistemic UQ: IVP, DSTE, and SOP

Epistemic uncertainty (aka: subjective, reducible, lack of knowledge uncertainty): insufficient info to specify objective probability distributions

Traditional approach: nested sampling

- Expensive sims → under-resolved sampling (especially @ outer loop)
- Under-prediction of credible outcomes

Algorithmic approaches

- Interval-valued probability (IVP), *aka* probability bounds analysis (PBA)
- Dempster-Shafer theory of evidence (DSTE)
- Second-order probability (SOP), aka probability of frequency

Address accuracy and efficiency

- Inner loop: stochastic exp. that are epistemic-aware (aleatory, combined)
- Outer loop:
 - IVP, DSTE: opt-based interval estimation, global (EGO) or local (NLP) ⇒
 - SOP: nested stochastic exp. (nested expectation is only post-processing in special cases)

epistemic

sampling

aleatory

sampling

minimize	M(s)
subject to	$s_L \le s \le s_U$
maximize	M(s)
subject to	$s_L \leq s \leq s_U$

Mixed Aleatory-Epistemic UQ: IVP, SOP, and DSTE based on Stochastic Expansions

Mixed Aleatory-Epistemic UQ: IVP, SOP, and DSTE based on Stochastic Expansions

Interv Est	UQ	Expansion	Evaluations			1	<u> </u>	
Approach	Approach	Variables	(Fn, Grad)	Area	β		i i la	 — — Global Opt/SC w=3 Belief — Global Opt/SC w=3 Plaus
IVP SC	SSG Aleato	<mark>ory:</mark> β inte	erval converged to	o 5-6 digits by	300-400 evals	- 9.0 - 80.0 - 80.0	տ, ար մլ Ար Հ, կեղ	 – – – LHS 100/LHS 100 Belief – – LHS 100/LHS 100 Plaus – – – LHS 1000/LHS 1000 Belief – – LHS 1000/LHS 1000 Plaus
EGO	SC SSG w = 1	Aleatory	(84/91, 0/0)	[75.0002, 374.999]	[-2.26264, 11.8623]	Ĕ	դ հ կ	
EGO	SC SSG w = 2	Aleatory	(372/403, 0/0)	[75.0002, 374.999]	[-2.18735, 11.5900]	<u>≩</u> 0.7-	it's by the	Multiple cells
EGO	SC SSG w = 3	Aleatory	(1260/1365, 0/0)	[75.0002, 374.999]	[-2.18732, 11.5900]	ausit		
EGO	SC SSG w = 4	Aleatory	(3564/3861, 0/0)	[75.0002, 374.999]	[-2.18732, 11.5900]	i 0.6−	ולר וה	within DSTE
NPSOL	SC SSG w = 1	Aleatory	(21/77, 21/77)	[75.0000, 375.000]	[-2.26264, 11.8623]	Bei	1) II.	
NPSOL	SC SSG $w = 2$	Aleatory	(93/341, 93/341)	[75.0000, 375.000]	$\left[-2.18735, 11.5901\right]$	9 U.3 -		П
NPSOL	SC SSG $w = 3$	Aleatory	(315/1155, 315/1155)	[75.0000, 375.000]	[-2.18732, 11.5900]		<u> </u>	
NPSOL	SC SSG w = 4	Aleatory	(891/3267, 891/3267)	[75.0000, 375.000]	[-2.18732, 11.5900]	C	말 네	
IVP nes	sted LHS sa	mpling:	converged to 2-3	digits by 10 ⁸ e	evals	- 5.0 plementary	i <u>- 1</u> 1	
LHS 100	LHS 100	N/A	$(10^4/10^4, 0/0)$	[80.5075, 338.607]	[-2.14505, 8.64891]	E 0.2-		י בי ו
LHS 1000	LHS 1000	N/A	$(10^6/10^6, 0/0)$	[76.5939, 368.225]	[-2.19883, 11.2353]	0.1		
LHS 10^4	LHS 10^4	N/A	$(10^8/10^8, 0/0)$	[76.4755, 373.935]	[-2.16323, 11.5593]	0.1-		
Fully co	onverged area	a interval	= [75., 375.], β in	terval = [-2.18	8732, 11.5900]	0	-2 0 2 Re	4 6 8 10 iability Index β

Impact: render mixed UQ studies practical for large-scale applications Current:

- Global or local opt. for epistemic intervals

 accuracy or scaling w/ epistemic dimension
- Global or local UQ for aleatory statistics
 → accuracy or scaling w/ aleatory dimension

Future:

→ adaptive and adjoint-enhanced global methods
 → accuracy and scaling

Concluding Remarks

R&D Drivers: efficient/robust/scalable core, complex random environments

Survey of core UQ algorithms: strengths, weaknesses, research needs

Sampling (nongradient-based)

- Strengths: Simple and reliable, convergence rate is dimension-independent
- Weaknesses: 1/sqrt(N) convergence \rightarrow expensive for accurate tail statistics

Local reliability (gradient-based)

- Strengths: computationally efficient, widely used, scalable to large n (w/ efficient derivs.)
- Weaknesses: algorithmic failures for limit states with following features
 - Nonsmooth: fail to converge to an MPP
 Multimodal: only locate one of several MPPs
 - Highly nonlinear: low order limit state approxs. insufficient to resolve probability at MPP

Global reliability (typically nongradient-based)

- Strengths: handles multimodal and/or highly nonlinear limit states
- Weaknesses:
 - Conditioning, nonsmoothness → ensemble emulation (recursion, discretization)
 - Scaling to large $n \rightarrow$ adjoints, additional refinement bias

Stochastic expansions (typically nongradient-based)

- Strengths: functional representation, exponential convergence rates for smooth problems
- Weaknesses:
 - Nonsmoothness \rightarrow basis enrichment, h-refinement, Pade approx.
 - Scaling to large $n \rightarrow$ adaptive refinement, adjoints

Build on algorithmic foundations

Design under uncertainty, Mixed UQ with IVP/SOP/DSTE

DAKOTA Software

flexible and extensible problem-solving environment for design and performance analysis of

Download

License Release Notes Registration

computational models on high performance computers

Applications

Privacy and Security - Site Contac

FAQ

ocumentation

Packages

Community support: dakota-users, dakota-help

DAKOTA Framework

Deployment Initiative: JAGUAR User Interface

- Eclipse-based rendering of full DAKOTA input spec.
- Automatic syntax updates
- Tool tips, Web links, help
- Symbolics, sim. interfacing

- Flat text editor for experienced users
- Keyword completion
- Automatically synchronized with GUI widgets
- Simplified views for high-use applications ("Wizards")

🥮 Resource - proj1/mydak.i - Jaguar	💻 Resource - JAGUAR/jaguar/misc_files/constropt.i - Jaguar 💦 🔲 🔀	🗖 Dakota LHS Wizard 💦 🗖 🔀			
<u>Eile E</u> dit <u>N</u> avigate <u>P</u> roject <u>Wi</u> ndow <u>H</u> elp	<u>File Edit N</u> avigate <u>P</u> roject <u>Wi</u> ndow <u>H</u> elp				
📫 🕶 🔡 🖆 🗧 🖓 * 🏷 (中・中・)	i 📫 🕶 🔛 💩 i 🖢 z 🖓 z 🍫 🔶 z 🔶 z	Specify Variables			
😰 陆 Resource	😭 🔁 Resource	Specify the table contents			
🚖 Jaguar Editor 🛛	🞇 *constropt.i 🛛 🗖				
method Sections method To define a problem for DAKOTA to solve, you must first define a model, a variable set, an interface set and a response set. Then you must select a method that performs a task such as optimization. method A method specifies the name and controls of an terative procedure thtp://www.cc.sandia.gov/DAKOTA/licensing/votd/html-ref/Method To define a model, a variable set, an interface set and a response set. Then you must select a method that performs a task such as optimization. Method set identifier (String) ModelCalibration	<pre># DAKOTA INPUT FILE - dakota_textbook.in strategy graphics single_method method max_iterations 50 convergence_tolerance 0.0001 dot mmfd</pre>	Uniform Uncertainty samples 100 uniform_uncertain 2 samples A descriptors 1 apha'			
type filter text Image: Learning filter Image: STRATEGY Imagegy Image	<pre>variables continuous_design 2 initial_point 0.9 1.1 lower_bounds 0.5 -2.9 upper_bounds 5.8 2.9 descriptors 'x1' 'x2' interface analysis_drivers 'text_book' direct responses num_oblective_functions 1 num_onlinear_inequality_constraints 2 numerical_gradients method_source dakota interval_type central fd_step_size 0.0001 no_hessians</pre>	100 'density' i i			
mydaki Problem Definition	Source Define Problem Define Flow/Iteration Execute Problem Visualize Results	Image: Cancel Image: Cancel			

Deployment Initiative: Embedding

Make DAKOTA natively available within application codes

- Streamline problem set-up, reduce complexity, and lower barriers
 - A few additional commands within existing simulation input spec.
 - Eliminate analysis driver creation & streamline analysis (e.g., file I/O)
 - Simplify parallel execution
- Integrated options for algorithm intrusion

SNL Embedding

- Existing: Xyce, Sage, Albany (TriKOTA)
- New: ALEGRA, SIERRA (TriKOTA) → STK

External Embedding

- Existing: ModelCenter, university applications
- New: QUESO (UT Austin), R7 (INL)
- Expanding our external focus:
 - GPL → LGPL; svn restricted → open network
 - Tailored interfaces & algorithms

ModelEvaluator Levels

Non-intrusive

ModelEvaluator: systems analysis

- · All residuals eliminated, coupling satisfied
- DAKOTA optimization & UQ

Intrusive to coupling

ModelEvaluator: multiphysics

- Individual physics residuals eliminated; coupling enforced by opt/UQ
- DAKOTA opt/UQ & MOOCHO opt.

Intrusive to physics

ModelEvaluator: single physics

- · No residuals eliminated
- MOOCHO opt., Stokhos UQ, NOX, LOCA

