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Survey of nonintrusive UQ methods: 
Sampling

Local and global reliability

Stochastic expansions: polynomial chaos, stochastic collocation

Build on these algorithmic foundations:

Mixed aleatory-epistemic UQ, Opt/model calibration under uncertainty

Overview of Uncertainty Quantification Algorithm R&D 

in the DAKOTA Project



Uncertainty Quantification Algorithms @ SNL:

New methods bridge robustness/efficiency gap

Production New Under dev. Planned Collabs.
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Algorithm R&D in Adaptive UQ
Drivers

• Efficient/robust/scalable core  adaptive methods, adjoint enhancement

• Complex random environments  epistemic/mixed UQ, 

model form/multifidelity, RF/SP, multiphysics/multiscale

Stochastic expansions: 

• Polynomial chaos expansions (PCE): known basis, compute coeffs

• Stochastic collocation (SC): known coeffs, form interpolants

• Adaptive approaches: emphasize key dimensions 

– Uniform/dim-adaptive p-refinement: iso/aniso/generalized sparse grids

– Dimension-adaptive h-refinement with grad-enhanced interpolants

• Sparse adaptive global methods: scale as mlog r with r << n

EGRA:

• Adaptive GP refinement for tail probability estimation

• Accuracy similar to exhaustive sampling at cost similar to 

local reliability assessment

• Global method that scales as ~n2

Sampling:

• Importance sampling (adaptive refinement)

• Incremental MC/LHS (uniform refinement)

super-

algebraic for 

integration, 

regression

1/sqrt(N) for LHS
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Algorithm R&D in UQ Complexity
Drivers

• Efficient/robust/scalable core  adaptive methods, adjoint enhancement

• Complex random env.  mixed UQ, model form/multifidelity, RF/SP, multiphysics/multiscale

Stochastic sensitivity analysis

• Aleatory or combined expansions including nonprobabilistic dimensions s

 sensitivities of moments w.r.t. design and/or epistemic parameters

Design and Model Calibration Under Uncertainty

Mixed Aleatory-Epistemic UQ

• SOP, IVP, and DSTE approaches that are more accurate and efficient

than traditional nested sampling

Random Fields / Stochastic Processes (Encore, PECOS)

Multiphysics (multiscale) UQ: 

• Invert UQ & multiphysics loops  transfer UQ stats among codes

Bayesian Inference:

• Collaborations w/ LANL (GPM), UT (Queso), Purdue/MIT (gPC)

Model form:

• Multifidelity UQ (hierarchy), model averaging/selection (ensemble)



Reliability Methods for UQ



UQ with Reliability Methods

Mean Value Method

Rough 

statistics

G(u)

MPP search methods

Reliability Index 

Approach (RIA)

Find min dist to G level curve

Used for fwd map z p/b

Performance Measure

Approach (PMA)

Find min G at b radius

Used for inv map p/b z

Nataf x  u:

Failure

region



AMV:

u-space AMV:

AMV+:

u-space AMV+:

FORM:  no linearization

Reliability Algorithm Variations

Limit state approximations

• 2nd-order local, e.g. x-space AMV2+:

• Hessians may be full/FD/Quasi

• Quasi-Newton Hessians may be BFGS or SR1



AMV:

u-space AMV:

AMV+:

u-space AMV+:

FORM:  no linearization

Reliability Algorithm Variations

Limit state approximations

Integrations

1st-order:

Warm starting (with projections)

When: AMV+ iteration increment, z/p/b level increment, or design variable change

What: linearization point & assoc. responses (AMV+), MPP search initial guess

MPP search algorithm

[HL-RF], Sequential Quadratic Prog. (SQP), Nonlinear Interior Point (NIP)
curvature correction

Additional refinement:

IS, AIS, MMAIS

2nd-order: Breit, Hohen-Rack, Hong

• 2nd-order local, e.g. x-space AMV2+:

• Hessians may be full/FD/Quasi

• Quasi-Newton Hessians may be BFGS or SR1

• Multipoint, e.g. TPEA, TANA:



Reliability Algorithm Variations:

Algorithm Performance Results

Analytic benchmark test problems: lognormal ratio, short column, cantilever

Note: 2nd-order PMA with prescribed p level is harder 

problem  requires b(p) update/inversion

43 z levels 43 p levels



Solution-Verified Reliability Analysis

and Design of MEMS

• Problem: MEMS subject to substantial variabilities

– Material properties, manufactured geometry, residual stresses

– Part yields can be low or have poor durability

– Data can be obtained  aleatory UQ  probabilistic methods

• Goal: account for both uncertainties and errors in design

– Integrate UQ/OUU (DAKOTA), ZZ/QOI error estimation (Encore), 

adaptivity (SIERRA), nonlin mech (Aria)  MESA application

– Perform soln verification in automated, parameter-adaptive way

– Generate fully converged UQ/OUU results at lower cost

Parameter study 

over 3σ uncertain 

variable range for 

fixed design 

variables dM*.  

Dashed black line 

denotes g(x) = 

Fmin(x) = -5.0.

• AMV2+ and FORM converge to different 

MPPs (+ and O respectively)

• Issue: high nonlinearity leading to 

multiple legitimate MPP solns.

• Challenge: design optimization may 

tend to seek out regions encircled by 

the failure domain.  1st-order and even 

2nd-order probability integrations can 

experience difficulty with this degree of 

nonlinearity. Optimizers can/will exploit 

this model weakness.
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Efficient Global Reliability Analysis (EGRA)

True fn

GP surrogate

Expected

Improvement

From Jones, Schonlau, Welch, 1998

• Address known failure modes of local reliability methods:

– Nonsmooth: fail to converge to an MPP

– Multimodal: only locate one of several MPPs

– Highly nonlinear: low order limit state approxs. fail to accurately estimate probability at MPP

• Based on EGO (surrogate-based global opt.), which exploits special features of GPs

– Mean and variance predictions: formulate expected improvement (EGO) or expected feasibility (EGRA)

– Balance explore and exploit in computing an optimum (EGO) or locating the limit state (EGRA)
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Efficient Global Reliability Analysis

10 samples 28 samples

explore

exploit



Stochastic Expansion Methods for UQ



Polynomial Chaos Expansions (PCE)

super-algebraic for num. 

integration & regression

1/sqrt(N) for LHS

Approximate response w/ spectral proj. using orthogonal polynomial basis fns

i.e. using

• Nonintrusive: estimate aj using sampling, regression,

tensor-product quadrature, sparse grids, or cubature

Generalized PCE (Wiener-Askey + numerically-generated)

• Tailor basis: selection of basis orthogonal to input PDF avoids additional nonlinearity

Additional bases generated numerically (discretized Stieltjes + Golub-Welsch)

• Tailor expansion form:
– Dimension p-refinement: anisotropic TPQ/SSG, generalized SSG

– Dimension & region h-refinement: local bases with global & local refinement



Stochastic Collocation
(based on interpolation polynomials)

Advantages relative to PCE:

• Somewhat simpler (no expansion order to manage separately)

• Often less expensive (no integration for coefficients)

• Expansion only formed for sampling  probabilities (estimating moments of any order is straightforward)

• Adaptive h-refinement with hierarchical surpluses; explicit gradient-enhancement

Disadvantages relative to PCE:

• Less flexible/fault tolerant  structured data sets (tensor/sparse grids)

• Expansion variance not guaranteed positive (important in opt./interval est.)

• No direct inference of spectral decay rates

With sufficient care on PCE form, PCE/SC performance is essentially identical

for many cases of interest (tensor/sparse grids with standard Gauss rules)

Instead of estimating coefficients for known basis functions, 

form interpolants for known coefficients

• Global:  Lagrange (values) or Hermite (values+derivatives)

• Local:    linear (values) or cubic (values+gradients) splines

Sparse interpolants formed using S of tensor interpolants



Approaches for forming PCE/SC Expansions 

Random sampling: PCE Tensor-product quadrature: PCE/SC

Smolyak Sparse Grid: PCE/SC Cubature: PCE

Stroud and extensions (Xiu, Cools)

 Low order PCE 

 global SA, anisotropy detection

Expectation (sampling):

– Sample w/i distribution of x

– Compute expected value of 

product of R and each Yj

Linear regression 

(“point collocation”):

– Sample w/i distribution of x

– Solves least squares data fit 

for all coefficients at once:

– Every combination of 1-D rules

– Scales as mn

– 1-D Gaussian rule of order m

 integrands to order 2m – 1

– Assuming RYj of order 2p, 

select m = p + 1

T
P

Q

S
S

G

Pascal’s triangle (2D):

Arbitrary PDF

Gaussian i = 2  p = 1



Adaptive Collocation Methods

Drivers: Efficiency, robustness, scalability adaptive methods, adjoint enhancement

Polynomial order (p-) refinement approaches:

• Uniform: isotropic tensor/sparse grids

• Increment grid: increase order/level, ensure change (restricted growth in nested rules)

• Assess convergence: L2 change in response covariance

Tensor-product quadrature Smolyak sparse grid



Adaptive Collocation Methods

Drivers: Efficiency, robustness, scalability adaptive methods, adjoint enhancement

Polynomial order (p-) refinement approaches:

• Uniform: isotropic tensor/sparse grids

• Increment grid: increase order/level, ensure change (restricted growth in nested rules)

• Assess convergence: L2 change in response covariance

• Dimension-adaptive: anisotropic tensor/sparse grids

• PCE/SC: variance-based decomp.  total Sobol’ indices  anisotropy (dimension preference)

• PCE: spectral coefficient decay rates  anisotropy (index set weights)

Tensor-product quadrature Smolyak sparse grid



Adaptive Collocation Methods

Drivers: Efficiency, robustness, scalability adaptive methods, adjoint enhancement

Polynomial order (p-) refinement approaches:

• Uniform: isotropic tensor/sparse grids

• Increment grid: increase order/level, ensure change (restricted growth in nested rules)

• Assess convergence: L2 change in response covariance

• Dimension-adaptive: anisotropic tensor/sparse grids

• PCE/SC: variance-based decomp.  total Sobol’ indices  anisotropy

• PCE: spectral coefficient decay rates  anisotropy

• Goal-oriented dimension-adaptive: generalized sparse grids

• PCE/SC: change in QOI induced by trial index sets on active front

(Gerstner, 2003)

Fine-grained control: 

frontier not limited by 

prescribed shape of 

index set constraint

Smolyak sparse grid

1 2

3 4

A

A

A

A

A1

A

A1 2

A

A1 2

3 AA

A

1. Initialization: Starting from reference grid 

(often w = 0 grid), define active index sets using 

admissible forward neighbors of all old index sets.

2. Trial set evaluation: For each trial index set, 

evaluate tensor grid, form tensor expansion, 

update combinatorial coefficients, and combine 

with reference expansion. Perform necessary 

bookkeeping to allow efficient restoration.

3. Trial set selection: Select trial index set that 

induces largest change in statistical QOI. 

4. Update sets: If largest change > tolerance, then 

promote selected trial set from active to old and 

compute new admissible active sets; return to 2. 

If tolerance is satisfied, advance to step 5.

5. Finalization: Promote all remaining active sets 

to old set, update combinatorial coefficients, and 

perform final combination of tensor expansions to 

arrive at final result for statistical QOI.
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SC SSG uniform

SC SSG adaptive Sobol

SC SSG adaptive generalized

PCE SSG uniform

PCE SSG adaptive Sobol

PCE SSG adaptive decay

PCE SSG adaptive generalized

Numerical Experiments

b = U[5,15], h = U[15,25],

P = N(500, 100), M = N(2000, 400), 

rP,M = 0.5, Y = logN(5, 0.5)

Short Column (n=5) 

Sparse

w, t, R, E, X, Y: U[1,10], U[1,10], 

N(4E4, 2E3), N(2.9E7, 1.45E6), 

N(500, 100), N(1E3, 100); D0 = 2.2535”
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Cantilever Beam (n=6)

Displacement Sparse
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Sparse
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SC SSG uniform

SC SSG adaptive Sobol

SC SSG adaptive generalized

PCE SSG uniform

PCE SSG adaptive Sobol

PCE SSG adaptive decay

PCE SSG adaptive generalized

Stress Sparse

• Designed to be challenging for global SA: 

term cancellations at mid-point & bounds

• Premature convergence in adaptive methods 

 start from higher-order grid

x1, x2, x3: iid U[0, 1]

Ishigami (n=3)



Extend Scalability through 

Adjoint Derivative-Enhancement

PCE:

• Linear regression with derivatives

• Gradients/Hessians  addtnl. eqns.

SC:

• Gradient-enhanced interpolants

• Local: cubic Hermite splines

• Global: Hermite interpolation polynomials

EGRA:

• Gradient-enhanced kriging/cokriging

• Interpolates function values and gradients

• Scaling: n2
 n



Gradient-Enhanced PCE

Straightforward regression approach:

Vandermonde-like systems known to suffer from ill-conditioning

• unweighted LLS by SVD 

(LAPACK GELSS)

• equality constrained LLS by QR 

(LAPACK GGLSE) when under-

determined by values alone 
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Rosenbrock no grads

Rosenbrock grads

Short col no grads

Short col grads

Cant beam no grads

Cant beam grads

LHS 2x oversample
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 no grads cr2

 grads GELSS cr2

 grads GGLSE cr2

 no grads cr2

 grads GELSS cr2

 grads GGLSE cr2

 no grads cr1

 grads GELSS cr1

 grads GGLSE cr1

 no grads cr1

 grads GELSS cr1

 grads GGLSE cr1

Error growth as we over-resolve exact solutions
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PCE Global Legendre

SC Global Lagrange

SC PWLinear Newton-Cotes

SC PWCubic Newton-Cotes
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Nonsmooth

Dimension-adaptive h-refinement for SC:

• Local spline interpolants: linear Lagrange (value-based), 

cubic Hermite (gradient-enhanced)

• Global grids: iso/aniso tensor, iso/aniso/generalized sparse

• h-refinement: uniform, adaptive, goal-oriented adaptive

• Basis formulations: nodal, hierarchical

Dimension-adaptive h-refinement 

with gradient-enhanced interpolants

and similar for higher-order moments

Cubic shape fns: type 1 

(value) & type 2 (gradient)

Multivariate tensor product to arbitrary derivative order (Lalescu):



Stochastic sensitivity analysis

• Aleatory or combined expansions including nonprobabilistic dimensions s

 sensitivities of moments w.r.t. design and/or epistemic parameters

Design and Model Calibration Under Uncertainty

Mixed Aleatory-Epistemic UQ

• Approaches that are more accurate/efficient than nested sampling

Build on efficient/scalable UQ core 

epistemic

sampling

aleatory

sampling

simulation

da

di
ui

ua

M
o
d

el

min

s.t.

Add resp stats su (, , z/b/p)

Increasing epistemic 

structure (stronger 

assumptions)

• Interval-valued probability (IVP), aka PBA

• Dempster-Shafer theory of evidence (DSTE)

• Second-order probability (SOP), aka PoF
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Mixed Aleatory-Epistemic UQ: IVP, DSTE, and SOP

Traditional approach: nested sampling

• Expensive sims under-resolved 

sampling (especially @ outer loop)

• Under-prediction of credible outcomes

epistemic

sampling

aleatory

sampling

simulation

Epistemic uncertainty (aka: subjective, reducible, lack of knowledge 

uncertainty): insufficient info to specify objective probability distributions

Address accuracy and efficiency

• Inner loop: stochastic exp. that are epistemic-aware (aleatory, combined)

• Outer loop:

• IVP, DSTE: opt-based interval estimation, global (EGO) or local (NLP)

• SOP: nested stochastic exp. (nested expectation is only post-processing in special cases)

Increasing epistemic 

structure (stronger 

assumptions)

Algorithmic approaches

• Interval-valued probability (IVP), aka probability bounds analysis (PBA)

• Dempster-Shafer theory of evidence (DSTE)

• Second-order probability (SOP), aka probability of frequency



IVP SC SSG Aleatory: b interval converged to 5-6 digits by 300-400 evals

IVP nested LHS sampling: converged to 2-3 digits by 108 evals

Fully converged area interval = [75., 375.], β interval = [−2.18732, 11.5900]

Mixed Aleatory-Epistemic UQ:
IVP, SOP, and DSTE based on Stochastic Expansions

Multiple cells 

within DSTE

Analytic C∞

Convergence rates for combined expansions

L∞ metrics: 

IVP mixed, 

DSTE mixed

L2 metrics:

Aleatory, 

SOP mixed

Rational
Discontinuous C0



IVP SC SSG Aleatory: b interval converged to 5-6 digits by 300-400 evals

IVP nested LHS sampling: converged to 2-3 digits by 108 evals

Fully converged area interval = [75., 375.], β interval = [−2.18732, 11.5900]

Mixed Aleatory-Epistemic UQ:
IVP, SOP, and DSTE based on Stochastic Expansions

Multiple cells 

within DSTE

Analytic C∞

Convergence rates for combined expansions

L∞ metrics: 

IVP mixed, 

DSTE mixed

L2 metrics:

Aleatory, 

SOP mixed

Rational
Discontinuous C0Impact: render mixed UQ studies 

practical for large-scale applications
Current: 

• Global or local opt. for epistemic intervals 

 accuracy or scaling w/ epistemic dimension

• Global or local UQ for aleatory statistics 

 accuracy or scaling w/ aleatory dimension

Future:

• adaptive and adjoint-enhanced global methods 

 accuracy and scaling



Concluding Remarks

Sampling (nongradient-based)

• Strengths: Simple and reliable, convergence rate is dimension-independent

• Weaknesses: 1/sqrt(N) convergence  expensive for accurate tail statistics

Local reliability (gradient-based)

• Strengths: computationally efficient, widely used, scalable to large n (w/ efficient derivs.)

• Weaknesses: algorithmic failures for limit states with following features

• Nonsmooth: fail to converge to an MPP

• Highly nonlinear: low order limit state approxs. insufficient to resolve probability at MPP

Global reliability (typically nongradient-based)

• Strengths: handles multimodal and/or highly nonlinear limit states

• Weaknesses:

• Conditioning, nonsmoothness  ensemble emulation (recursion, discretization)

• Scaling to large n  adjoints, additional refinement bias

Stochastic expansions (typically nongradient-based)

• Strengths: functional representation, exponential convergence rates for smooth problems

• Weaknesses: 

• Nonsmoothness  basis enrichment, h-refinement, Pade approx.

• Scaling to large n  adaptive refinement, adjoints

• Multimodal: only locate one of several MPPs

Build on algorithmic foundations

Design under uncertainty, Mixed UQ with IVP/SOP/DSTE

R&D Drivers: efficient/robust/scalable core, complex random environments

Survey of core UQ algorithms:  strengths, weaknesses, research needs



DAKOTA Software

Releases: Major/Interim, Stable/VOTD; 5.1 released 12/10

Modern SQE: Linux/Unix, Mac, Windows; Nightly builds/testing;

subversion, TRAC, autotools/Cmake

GNU LGPL: free downloads worldwide 

(>7000 total ext. registrations, ~3500 distributions last yr.)

Community development: open checkouts now available

Community support: dakota-users, dakota-help

Black box:

Sandia simulation codes

Commercial simulation codes

Library mode (semi-intrusive):

ALEGRA (shock physics),

Xyce (circuits), Sage (CFD),

Albany/TriKota (Trilinos-based),

MATLAB, Python, ModelCenter, 

SIERRA (multiphysics)

DAKOTA

Optimization

Uncertainty Quant.

Parameter Est.

Sensitivity Analysis

Model

Parameters

Design

Metrics

Iterative systems analysis

Multilevel parallel computing

Simulation management

http://dakota.sandia.gov

Manuals, Publications, Training matls. online
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Model 

Strategy: control of multiple iterators and models

Iterator 

Model 

Iterator 

Model 

Coordination:
Nested
Layered
Cascaded
Concurrent
Adaptive/Interactive

Parallelism:
Asynchronous local

Message passing

Hybrid

4 nested levels with
Master-slave/dynamic

Peer/static

DAKOTA Framework

Parameters

Model:

Design
continuous

discrete

Uncertain
normal/logn

uniform/logu

triangular

exp/beta/gamma

EV I, II, III

histogram

interval

State
continuous

discrete

Application
system

fork

direct

grid

Approximation

global
polynomial 1/2/3, NN,

kriging, MARS, RBF

multipoint – TANA3

local – Taylor series

multifidelity

ROM

Functions
objectives

constraints
least sq. terms
generic

ResponsesInterfaceParameters

LHS/MC

Iterator 

Optimizer
ParamStudy

COLINYNPSOLDOT OPT++

LeastSqDoE

GN

Vector

MultiD

List

DDACE CCD/BB

UQ

Reliability

DSTE

JEGACONMIN

NLSSOL

NL2SOLQMC/CVT

Gradients
numerical

analytic

Hessians
numerical

analytic

quasiNLPQL

CenterPCE/SC

Strategy

Uncertainty LeastSq

Hybrid

SurrBased

OptUnderUnc

Branch&Bound/PICO

Optimization

2ndOrderProb

UncOfOptima

Pareto/MStart

ModelCalUnderUnc
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Deployment Initiative: JAGUAR User Interface

• Eclipse-based rendering of 

full DAKOTA input spec.

• Automatic syntax updates

• Tool tips, Web links, help

• Symbolics, sim. interfacing

• Simplified views for high-use 

applications (“Wizards”)

• Flat text editor for 

experienced users

• Keyword completion

• Automatically synchronized 

with GUI widgets
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Deployment Initiative: Embedding

Make DAKOTA natively available within application codes

• Streamline problem set-up, reduce complexity, and lower barriers

– A few additional commands within existing simulation input spec.

– Eliminate analysis driver creation & streamline analysis (e.g., file I/O)

– Simplify parallel execution

• Integrated options for algorithm intrusion

SNL Embedding

• Existing: Xyce, Sage, Albany (TriKOTA)

• New: ALEGRA, SIERRA (TriKOTA)  STK

External Embedding

• Existing: ModelCenter, university applications

• New: QUESO (UT Austin), R7 (INL)

• Expanding our external focus:

– GPL  LGPL; svn restricted  open network

– Tailored interfaces & algorithms

Intrusive to coupling

ModelEvaluator: systems analysis

• All residuals eliminated, coupling satisfied

• DAKOTA optimization & UQ

ModelEvaluator: multiphysics

• Individual physics residuals eliminated; 

coupling enforced by opt/UQ

• DAKOTA opt/UQ & MOOCHO opt.

ModelEvaluator: single physics

• No residuals eliminated

• MOOCHO opt., Stokhos UQ, NOX, LOCA

ModelEvaluator Levels

Non-intrusive

Intrusive to physics


