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Survey of nonintrusive UQ methods: 
Sampling

Local and global reliability

Stochastic expansions: polynomial chaos, stochastic collocation

Build on these algorithmic foundations:

Mixed aleatory-epistemic UQ, Opt/model calibration under uncertainty

Overview of Uncertainty Quantification Algorithm R&D 

in the DAKOTA Project



Uncertainty Quantification Algorithms @ SNL:

New methods bridge robustness/efficiency gap

Production New Under dev. Planned Collabs.
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Algorithm R&D in Adaptive UQ
Drivers

• Efficient/robust/scalable core  adaptive methods, adjoint enhancement

• Complex random environments  epistemic/mixed UQ, 

model form/multifidelity, RF/SP, multiphysics/multiscale

Stochastic expansions: 

• Polynomial chaos expansions (PCE): known basis, compute coeffs

• Stochastic collocation (SC): known coeffs, form interpolants

• Adaptive approaches: emphasize key dimensions 

– Uniform/dim-adaptive p-refinement: iso/aniso/generalized sparse grids

– Dimension-adaptive h-refinement with grad-enhanced interpolants

• Sparse adaptive global methods: scale as mlog r with r << n

EGRA:

• Adaptive GP refinement for tail probability estimation

• Accuracy similar to exhaustive sampling at cost similar to 

local reliability assessment

• Global method that scales as ~n2

Sampling:

• Importance sampling (adaptive refinement)

• Incremental MC/LHS (uniform refinement)

super-

algebraic for 

integration, 

regression

1/sqrt(N) for LHS
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Algorithm R&D in UQ Complexity
Drivers

• Efficient/robust/scalable core  adaptive methods, adjoint enhancement

• Complex random env.  mixed UQ, model form/multifidelity, RF/SP, multiphysics/multiscale

Stochastic sensitivity analysis

• Aleatory or combined expansions including nonprobabilistic dimensions s

 sensitivities of moments w.r.t. design and/or epistemic parameters

Design and Model Calibration Under Uncertainty

Mixed Aleatory-Epistemic UQ

• SOP, IVP, and DSTE approaches that are more accurate and efficient

than traditional nested sampling

Random Fields / Stochastic Processes (Encore, PECOS)

Multiphysics (multiscale) UQ: 

• Invert UQ & multiphysics loops  transfer UQ stats among codes

Bayesian Inference:

• Collaborations w/ LANL (GPM), UT (Queso), Purdue/MIT (gPC)

Model form:

• Multifidelity UQ (hierarchy), model averaging/selection (ensemble)



Reliability Methods for UQ



UQ with Reliability Methods

Mean Value Method

Rough 

statistics

G(u)

MPP search methods

Reliability Index 

Approach (RIA)

Find min dist to G level curve

Used for fwd map z p/b

Performance Measure

Approach (PMA)

Find min G at b radius

Used for inv map p/b z

Nataf x  u:

Failure

region



AMV:

u-space AMV:

AMV+:

u-space AMV+:

FORM:  no linearization

Reliability Algorithm Variations

Limit state approximations

• 2nd-order local, e.g. x-space AMV2+:

• Hessians may be full/FD/Quasi

• Quasi-Newton Hessians may be BFGS or SR1



AMV:

u-space AMV:

AMV+:

u-space AMV+:

FORM:  no linearization

Reliability Algorithm Variations

Limit state approximations

Integrations

1st-order:

Warm starting (with projections)

When: AMV+ iteration increment, z/p/b level increment, or design variable change

What: linearization point & assoc. responses (AMV+), MPP search initial guess

MPP search algorithm

[HL-RF], Sequential Quadratic Prog. (SQP), Nonlinear Interior Point (NIP)
curvature correction

Additional refinement:

IS, AIS, MMAIS

2nd-order: Breit, Hohen-Rack, Hong

• 2nd-order local, e.g. x-space AMV2+:

• Hessians may be full/FD/Quasi

• Quasi-Newton Hessians may be BFGS or SR1

• Multipoint, e.g. TPEA, TANA:



Reliability Algorithm Variations:

Algorithm Performance Results

Analytic benchmark test problems: lognormal ratio, short column, cantilever

Note: 2nd-order PMA with prescribed p level is harder 

problem  requires b(p) update/inversion

43 z levels 43 p levels



Solution-Verified Reliability Analysis

and Design of MEMS

• Problem: MEMS subject to substantial variabilities

– Material properties, manufactured geometry, residual stresses

– Part yields can be low or have poor durability

– Data can be obtained  aleatory UQ  probabilistic methods

• Goal: account for both uncertainties and errors in design

– Integrate UQ/OUU (DAKOTA), ZZ/QOI error estimation (Encore), 

adaptivity (SIERRA), nonlin mech (Aria)  MESA application

– Perform soln verification in automated, parameter-adaptive way

– Generate fully converged UQ/OUU results at lower cost

Parameter study 

over 3σ uncertain 

variable range for 

fixed design 

variables dM*.  

Dashed black line 

denotes g(x) = 

Fmin(x) = -5.0.

• AMV2+ and FORM converge to different 

MPPs (+ and O respectively)

• Issue: high nonlinearity leading to 

multiple legitimate MPP solns.

• Challenge: design optimization may 

tend to seek out regions encircled by 

the failure domain.  1st-order and even 

2nd-order probability integrations can 

experience difficulty with this degree of 

nonlinearity. Optimizers can/will exploit 

this model weakness.
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Efficient Global Reliability Analysis (EGRA)

True fn

GP surrogate

Expected

Improvement

From Jones, Schonlau, Welch, 1998

• Address known failure modes of local reliability methods:

– Nonsmooth: fail to converge to an MPP

– Multimodal: only locate one of several MPPs

– Highly nonlinear: low order limit state approxs. fail to accurately estimate probability at MPP

• Based on EGO (surrogate-based global opt.), which exploits special features of GPs

– Mean and variance predictions: formulate expected improvement (EGO) or expected feasibility (EGRA)

– Balance explore and exploit in computing an optimum (EGO) or locating the limit state (EGRA)
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Efficient Global Reliability Analysis

10 samples 28 samples

explore

exploit



Stochastic Expansion Methods for UQ



Polynomial Chaos Expansions (PCE)

super-algebraic for num. 

integration & regression

1/sqrt(N) for LHS

Approximate response w/ spectral proj. using orthogonal polynomial basis fns

i.e. using

• Nonintrusive: estimate aj using sampling, regression,

tensor-product quadrature, sparse grids, or cubature

Generalized PCE (Wiener-Askey + numerically-generated)

• Tailor basis: selection of basis orthogonal to input PDF avoids additional nonlinearity

Additional bases generated numerically (discretized Stieltjes + Golub-Welsch)

• Tailor expansion form:
– Dimension p-refinement: anisotropic TPQ/SSG, generalized SSG

– Dimension & region h-refinement: local bases with global & local refinement



Stochastic Collocation
(based on interpolation polynomials)

Advantages relative to PCE:

• Somewhat simpler (no expansion order to manage separately)

• Often less expensive (no integration for coefficients)

• Expansion only formed for sampling  probabilities (estimating moments of any order is straightforward)

• Adaptive h-refinement with hierarchical surpluses; explicit gradient-enhancement

Disadvantages relative to PCE:

• Less flexible/fault tolerant  structured data sets (tensor/sparse grids)

• Expansion variance not guaranteed positive (important in opt./interval est.)

• No direct inference of spectral decay rates

With sufficient care on PCE form, PCE/SC performance is essentially identical

for many cases of interest (tensor/sparse grids with standard Gauss rules)

Instead of estimating coefficients for known basis functions, 

form interpolants for known coefficients

• Global:  Lagrange (values) or Hermite (values+derivatives)

• Local:    linear (values) or cubic (values+gradients) splines

Sparse interpolants formed using S of tensor interpolants



Approaches for forming PCE/SC Expansions 

Random sampling: PCE Tensor-product quadrature: PCE/SC

Smolyak Sparse Grid: PCE/SC Cubature: PCE

Stroud and extensions (Xiu, Cools)

 Low order PCE 

 global SA, anisotropy detection

Expectation (sampling):

– Sample w/i distribution of x

– Compute expected value of 

product of R and each Yj

Linear regression 

(“point collocation”):

– Sample w/i distribution of x

– Solves least squares data fit 

for all coefficients at once:

– Every combination of 1-D rules

– Scales as mn

– 1-D Gaussian rule of order m

 integrands to order 2m – 1

– Assuming RYj of order 2p, 

select m = p + 1

T
P

Q

S
S

G

Pascal’s triangle (2D):

Arbitrary PDF

Gaussian i = 2  p = 1



Adaptive Collocation Methods

Drivers: Efficiency, robustness, scalability adaptive methods, adjoint enhancement

Polynomial order (p-) refinement approaches:

• Uniform: isotropic tensor/sparse grids

• Increment grid: increase order/level, ensure change (restricted growth in nested rules)

• Assess convergence: L2 change in response covariance

Tensor-product quadrature Smolyak sparse grid



Adaptive Collocation Methods

Drivers: Efficiency, robustness, scalability adaptive methods, adjoint enhancement

Polynomial order (p-) refinement approaches:

• Uniform: isotropic tensor/sparse grids

• Increment grid: increase order/level, ensure change (restricted growth in nested rules)

• Assess convergence: L2 change in response covariance

• Dimension-adaptive: anisotropic tensor/sparse grids

• PCE/SC: variance-based decomp.  total Sobol’ indices  anisotropy (dimension preference)

• PCE: spectral coefficient decay rates  anisotropy (index set weights)

Tensor-product quadrature Smolyak sparse grid



Adaptive Collocation Methods

Drivers: Efficiency, robustness, scalability adaptive methods, adjoint enhancement

Polynomial order (p-) refinement approaches:

• Uniform: isotropic tensor/sparse grids

• Increment grid: increase order/level, ensure change (restricted growth in nested rules)

• Assess convergence: L2 change in response covariance

• Dimension-adaptive: anisotropic tensor/sparse grids

• PCE/SC: variance-based decomp.  total Sobol’ indices  anisotropy

• PCE: spectral coefficient decay rates  anisotropy

• Goal-oriented dimension-adaptive: generalized sparse grids

• PCE/SC: change in QOI induced by trial index sets on active front

(Gerstner, 2003)

Fine-grained control: 

frontier not limited by 

prescribed shape of 

index set constraint

Smolyak sparse grid

1 2

3 4

A

A

A

A

A1

A

A1 2

A

A1 2

3 AA

A

1. Initialization: Starting from reference grid 

(often w = 0 grid), define active index sets using 

admissible forward neighbors of all old index sets.

2. Trial set evaluation: For each trial index set, 

evaluate tensor grid, form tensor expansion, 

update combinatorial coefficients, and combine 

with reference expansion. Perform necessary 

bookkeeping to allow efficient restoration.

3. Trial set selection: Select trial index set that 

induces largest change in statistical QOI. 

4. Update sets: If largest change > tolerance, then 

promote selected trial set from active to old and 

compute new admissible active sets; return to 2. 

If tolerance is satisfied, advance to step 5.

5. Finalization: Promote all remaining active sets 

to old set, update combinatorial coefficients, and 

perform final combination of tensor expansions to 

arrive at final result for statistical QOI.
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SC SSG uniform

SC SSG adaptive Sobol

SC SSG adaptive generalized

PCE SSG uniform

PCE SSG adaptive Sobol

PCE SSG adaptive decay

PCE SSG adaptive generalized

Numerical Experiments

b = U[5,15], h = U[15,25],

P = N(500, 100), M = N(2000, 400), 

rP,M = 0.5, Y = logN(5, 0.5)

Short Column (n=5) 

Sparse

w, t, R, E, X, Y: U[1,10], U[1,10], 

N(4E4, 2E3), N(2.9E7, 1.45E6), 

N(500, 100), N(1E3, 100); D0 = 2.2535”
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Cantilever Beam (n=6)

Displacement Sparse
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Sparse
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SC SSG uniform

SC SSG adaptive Sobol

SC SSG adaptive generalized

PCE SSG uniform

PCE SSG adaptive Sobol

PCE SSG adaptive decay

PCE SSG adaptive generalized

Stress Sparse

• Designed to be challenging for global SA: 

term cancellations at mid-point & bounds

• Premature convergence in adaptive methods 

 start from higher-order grid

x1, x2, x3: iid U[0, 1]

Ishigami (n=3)



Extend Scalability through 

Adjoint Derivative-Enhancement

PCE:

• Linear regression with derivatives

• Gradients/Hessians  addtnl. eqns.

SC:

• Gradient-enhanced interpolants

• Local: cubic Hermite splines

• Global: Hermite interpolation polynomials

EGRA:

• Gradient-enhanced kriging/cokriging

• Interpolates function values and gradients

• Scaling: n2
 n



Gradient-Enhanced PCE

Straightforward regression approach:

Vandermonde-like systems known to suffer from ill-conditioning

• unweighted LLS by SVD 

(LAPACK GELSS)

• equality constrained LLS by QR 

(LAPACK GGLSE) when under-

determined by values alone 
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Grad-Enhanced PCE: SVD Condition for Pt Colloc ratio = 2

 

 

Rosenbrock no grads

Rosenbrock grads

Short col no grads

Short col grads

Cant beam no grads

Cant beam grads

LHS 2x oversample

0 2 4 6 8 10 12 14
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

Expansion Order

M
o
m

e
n

t 
e

rr
o

r

Gradient-Enhanced PCE: Rosenbrock Moments

 

 

 no grads cr2

 grads GELSS cr2

 grads GGLSE cr2

 no grads cr2

 grads GELSS cr2

 grads GGLSE cr2

 no grads cr1

 grads GELSS cr1

 grads GGLSE cr1

 no grads cr1

 grads GELSS cr1

 grads GGLSE cr1

Error growth as we over-resolve exact solutions
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PCE Global Legendre

SC Global Lagrange

SC PWLinear Newton-Cotes

SC PWCubic Newton-Cotes
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Smooth

Nonsmooth

Dimension-adaptive h-refinement for SC:

• Local spline interpolants: linear Lagrange (value-based), 

cubic Hermite (gradient-enhanced)

• Global grids: iso/aniso tensor, iso/aniso/generalized sparse

• h-refinement: uniform, adaptive, goal-oriented adaptive

• Basis formulations: nodal, hierarchical

Dimension-adaptive h-refinement 

with gradient-enhanced interpolants

and similar for higher-order moments

Cubic shape fns: type 1 

(value) & type 2 (gradient)

Multivariate tensor product to arbitrary derivative order (Lalescu):



Stochastic sensitivity analysis

• Aleatory or combined expansions including nonprobabilistic dimensions s

 sensitivities of moments w.r.t. design and/or epistemic parameters

Design and Model Calibration Under Uncertainty

Mixed Aleatory-Epistemic UQ

• Approaches that are more accurate/efficient than nested sampling

Build on efficient/scalable UQ core 

epistemic

sampling

aleatory

sampling

simulation

da

di
ui

ua

M
o
d

el

min

s.t.

Add resp stats su (, , z/b/p)

Increasing epistemic 

structure (stronger 

assumptions)

• Interval-valued probability (IVP), aka PBA

• Dempster-Shafer theory of evidence (DSTE)

• Second-order probability (SOP), aka PoF
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second-order 

statistics

Mixed Aleatory-Epistemic UQ: IVP, DSTE, and SOP

Traditional approach: nested sampling

• Expensive sims under-resolved 

sampling (especially @ outer loop)

• Under-prediction of credible outcomes

epistemic

sampling

aleatory

sampling

simulation

Epistemic uncertainty (aka: subjective, reducible, lack of knowledge 

uncertainty): insufficient info to specify objective probability distributions

Address accuracy and efficiency

• Inner loop: stochastic exp. that are epistemic-aware (aleatory, combined)

• Outer loop:

• IVP, DSTE: opt-based interval estimation, global (EGO) or local (NLP)

• SOP: nested stochastic exp. (nested expectation is only post-processing in special cases)

Increasing epistemic 

structure (stronger 

assumptions)

Algorithmic approaches

• Interval-valued probability (IVP), aka probability bounds analysis (PBA)

• Dempster-Shafer theory of evidence (DSTE)

• Second-order probability (SOP), aka probability of frequency



IVP SC SSG Aleatory: b interval converged to 5-6 digits by 300-400 evals

IVP nested LHS sampling: converged to 2-3 digits by 108 evals

Fully converged area interval = [75., 375.], β interval = [−2.18732, 11.5900]

Mixed Aleatory-Epistemic UQ:
IVP, SOP, and DSTE based on Stochastic Expansions

Multiple cells 

within DSTE

Analytic C∞

Convergence rates for combined expansions

L∞ metrics: 

IVP mixed, 

DSTE mixed

L2 metrics:

Aleatory, 

SOP mixed

Rational
Discontinuous C0



IVP SC SSG Aleatory: b interval converged to 5-6 digits by 300-400 evals

IVP nested LHS sampling: converged to 2-3 digits by 108 evals

Fully converged area interval = [75., 375.], β interval = [−2.18732, 11.5900]

Mixed Aleatory-Epistemic UQ:
IVP, SOP, and DSTE based on Stochastic Expansions

Multiple cells 

within DSTE

Analytic C∞

Convergence rates for combined expansions

L∞ metrics: 

IVP mixed, 

DSTE mixed

L2 metrics:

Aleatory, 

SOP mixed

Rational
Discontinuous C0Impact: render mixed UQ studies 

practical for large-scale applications
Current: 

• Global or local opt. for epistemic intervals 

 accuracy or scaling w/ epistemic dimension

• Global or local UQ for aleatory statistics 

 accuracy or scaling w/ aleatory dimension

Future:

• adaptive and adjoint-enhanced global methods 

 accuracy and scaling



Concluding Remarks

Sampling (nongradient-based)

• Strengths: Simple and reliable, convergence rate is dimension-independent

• Weaknesses: 1/sqrt(N) convergence  expensive for accurate tail statistics

Local reliability (gradient-based)

• Strengths: computationally efficient, widely used, scalable to large n (w/ efficient derivs.)

• Weaknesses: algorithmic failures for limit states with following features

• Nonsmooth: fail to converge to an MPP

• Highly nonlinear: low order limit state approxs. insufficient to resolve probability at MPP

Global reliability (typically nongradient-based)

• Strengths: handles multimodal and/or highly nonlinear limit states

• Weaknesses:

• Conditioning, nonsmoothness  ensemble emulation (recursion, discretization)

• Scaling to large n  adjoints, additional refinement bias

Stochastic expansions (typically nongradient-based)

• Strengths: functional representation, exponential convergence rates for smooth problems

• Weaknesses: 

• Nonsmoothness  basis enrichment, h-refinement, Pade approx.

• Scaling to large n  adaptive refinement, adjoints

• Multimodal: only locate one of several MPPs

Build on algorithmic foundations

Design under uncertainty, Mixed UQ with IVP/SOP/DSTE

R&D Drivers: efficient/robust/scalable core, complex random environments

Survey of core UQ algorithms:  strengths, weaknesses, research needs



DAKOTA Software

Releases: Major/Interim, Stable/VOTD; 5.1 released 12/10

Modern SQE: Linux/Unix, Mac, Windows; Nightly builds/testing;

subversion, TRAC, autotools/Cmake

GNU LGPL: free downloads worldwide 

(>7000 total ext. registrations, ~3500 distributions last yr.)

Community development: open checkouts now available

Community support: dakota-users, dakota-help

Black box:

Sandia simulation codes

Commercial simulation codes

Library mode (semi-intrusive):

ALEGRA (shock physics),

Xyce (circuits), Sage (CFD),

Albany/TriKota (Trilinos-based),

MATLAB, Python, ModelCenter, 

SIERRA (multiphysics)

DAKOTA

Optimization

Uncertainty Quant.

Parameter Est.

Sensitivity Analysis

Model

Parameters

Design

Metrics

Iterative systems analysis

Multilevel parallel computing

Simulation management

http://dakota.sandia.gov

Manuals, Publications, Training matls. online



Iterator 

Model 

Strategy: control of multiple iterators and models

Iterator 

Model 

Iterator 

Model 

Coordination:
Nested
Layered
Cascaded
Concurrent
Adaptive/Interactive

Parallelism:
Asynchronous local

Message passing

Hybrid

4 nested levels with
Master-slave/dynamic

Peer/static

DAKOTA Framework

Parameters

Model:

Design
continuous

discrete

Uncertain
normal/logn

uniform/logu

triangular

exp/beta/gamma

EV I, II, III

histogram

interval

State
continuous

discrete

Application
system

fork

direct

grid

Approximation

global
polynomial 1/2/3, NN,

kriging, MARS, RBF

multipoint – TANA3

local – Taylor series

multifidelity

ROM

Functions
objectives

constraints
least sq. terms
generic

ResponsesInterfaceParameters

LHS/MC

Iterator 

Optimizer
ParamStudy

COLINYNPSOLDOT OPT++

LeastSqDoE

GN

Vector

MultiD

List

DDACE CCD/BB

UQ

Reliability

DSTE

JEGACONMIN

NLSSOL

NL2SOLQMC/CVT

Gradients
numerical

analytic

Hessians
numerical

analytic

quasiNLPQL

CenterPCE/SC

Strategy

Uncertainty LeastSq

Hybrid

SurrBased

OptUnderUnc

Branch&Bound/PICO

Optimization

2ndOrderProb

UncOfOptima

Pareto/MStart

ModelCalUnderUnc
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Deployment Initiative: JAGUAR User Interface

• Eclipse-based rendering of 

full DAKOTA input spec.

• Automatic syntax updates

• Tool tips, Web links, help

• Symbolics, sim. interfacing

• Simplified views for high-use 

applications (“Wizards”)

• Flat text editor for 

experienced users

• Keyword completion

• Automatically synchronized 

with GUI widgets
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Deployment Initiative: Embedding

Make DAKOTA natively available within application codes

• Streamline problem set-up, reduce complexity, and lower barriers

– A few additional commands within existing simulation input spec.

– Eliminate analysis driver creation & streamline analysis (e.g., file I/O)

– Simplify parallel execution

• Integrated options for algorithm intrusion

SNL Embedding

• Existing: Xyce, Sage, Albany (TriKOTA)

• New: ALEGRA, SIERRA (TriKOTA)  STK

External Embedding

• Existing: ModelCenter, university applications

• New: QUESO (UT Austin), R7 (INL)

• Expanding our external focus:

– GPL  LGPL; svn restricted  open network

– Tailored interfaces & algorithms

Intrusive to coupling

ModelEvaluator: systems analysis

• All residuals eliminated, coupling satisfied

• DAKOTA optimization & UQ

ModelEvaluator: multiphysics

• Individual physics residuals eliminated; 

coupling enforced by opt/UQ

• DAKOTA opt/UQ & MOOCHO opt.

ModelEvaluator: single physics

• No residuals eliminated

• MOOCHO opt., Stokhos UQ, NOX, LOCA

ModelEvaluator Levels

Non-intrusive

Intrusive to physics


