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Summary

Numerical quantification of results from a measurement

uncertainty (MU) computation in terms of computational inputs

Primary output often an approximation to the PDF (probability

density function) for the (univariate or multivariate) measurand

(quantity intended to be measured)

From this PDF results of interest can be derived

Many metrology problems small-scale; important exceptions

Main driver: production of guidance for metrologists on MU

evaluation
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Specifics

Account for available knowledge of input quantities

Propagation of distributions through a computational model

Numerical quality and representation of MC results

Sensitivity issues

Concluding remarks and speculations
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Traditional approach to MU evaluation

National Metrology Institutes (NMIs) and industrial laboratories

routinely propagate uncertainties related to input quantities

through computational models to provide uncertainties related

to output quantities

Computational model ≡ mathematical model of measurement

Relevant guidance available and supporting software exists
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Joint Committee for Guides in Metrology (JCGM)

“To maintain and promote the use of the Guide to the

Expression of Uncertainty in Measurement (GUM) and

the International Vocabulary of Basic and General

Terms in Metrology (VIM)”
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JCGM Member Organizations (up to 3 reps from each)
BIPM Bureau International des Poids et Mesures

IEC International Electrotechnical Commission

IFCC International Federation of Clinical Chemistry
and Laboratory Medicine

ILAC International Laboratory Accreditation Cooperation

ISO International Organization for Standardization

IUPAC International Union for Pure and Applied Chemistry

IUPAP International Union for Pure and Applied Physics

OIML International Organization of Legal Metrology
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GUM

In a very practical sense, has served metrology well since 1993

Basis: Linearization of model [Y = f(X)], normality

assumption, mix of frequentist and Bayesian statistics

JCGM revising GUM because of limitations and inconsistencies

JCGM view: characterize input quantities by PDFs, which are

propagated through the model to obtain PDF for output

quantities

Best estimate, standard uncertainty and coverage intervals for

the measurand (all used by metrologists) then readily obtained
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JCGM 100 Guide to the expression of uncertainty

in measurement (GUM)

2008†

JCGM 101 Propagation of distributions using a

Monte Carlo method

2008

JCGM 102 Extension to any number of output

quantities

2011∗

JCGM 103 Developing and using measurement

models

Draft

JCGM 104 An introduction to the GUM and related

documents

2009

JCGM 105 Concepts, principles, and methods for

the evaluation of MU

Draft

JCGM 106 Conformity assessment 2011∗

JCGM 107 Least squares adjustment ‡
JCGM 200 Vocabulary of metrology (VIM) 2008

www.bipm.org †Under revision ∗Expected ‡Pending
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Main considerations

MU evaluation

Some principles apply more widely (not all inputs always relate

to measurement)

The result of a computation represents the effect of

uncertainty from all sources considered

Numerical methods of solution, especially MC and MC-like

methods, used
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Knowledge and PDFs

Computational model Y = f(X): measurement equation (ME)

X: input quantities (N in number)

Y : output quantities

f : given function, specified by a computational model

Given knowledge about X, knowledge is required about Y

Prior knowledge of Y may be available

Components of X are characterized by random variables, and

in all cases we encode available knowledge about X as a PDF
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More boring notation

p(Z): PDF for quantity Z by

z: estimate of Z, taken as E(Z)

Uz: associated covariance matrix, taken as V (Z)

u(zi): standard uncertainty associated with ith component of z
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Different forms of uncertainty?

Consider (A) aleatory uncertainties (due to random effects)
and (B) epistemic uncertainties (due to other effects)

Some authors treat (A) as random variables with PDFs, and
(B) as intervals with no assumed PDFs

In metrology we encode knowledge of any quantity by a PDF,
as advocated by the GUM

The rules of probability calculus can then be employed

In contrast, the two types of uncertainty are propagated
separately and results combined, with nesting of A within B,
e.g., Roy and Oberkampf (2011), DAKOTA
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Numerical analysis

Numerical analysis has long history in uncertainty quantification
(UQ) when computing in finite arithmetic

Two principal techniques for carrying out error propagation:
interval analysis and floating-point (FP) error analysis

We recognize value of FP error analysis: analysis of numerical
stability of algorithms used within the computational model

We distinguish between errors and uncertainties

Error: difference between the value of a quantity and the true
value for that quantity

Uncertainty: measure of dispersion (such as the standard
deviation of the PDF) for that quantity
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Accounting for available knowledge of input quantities

Encoding of knowledge of input quantity by PDF for that

quantity

Use MAXENT, the maximum entropy principle, or

Bayes’ theorem when repeated observations of a quantity are

available
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Knowledge-based PDFs (GUM Supplement 1)

Lower and upper limits Uniform

Best estimate, standard uncertainty Gaussian

Independent Gaussian observations

(unknown expectation, variance)

Scaled,

shifted t

Best estimate of non-negative quantity Exponential

More in GUM Supplement 1
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Example: Has a horse been doped?

Hibbert et al (2011) apply MAXENT and Bayesian model
selection to decision-making problems in horse-doping:

From large mass of historical data construct PDFs for TCO2

concentration in pre-race samples of plasma

Obtain separate PDFs for ‘clean’ horses and horses that were

subsequently tested positive

Using q leading moments of data, apply MAXENT to

deliver PDF based on set of Lagrangian parameters

Use Bayesian model selection to obtain q that maximizes

Bayesian model probability: avoids model over-fitting
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For clean horses, probabilities of models (log scale):

Conclude: Bayesian model selection strongly settles for
moderately complex model of form exp(a1X + · · ·+ a6X

6)

Compared with simple model such as exp(a1X + a2X
2), which,

for a2 < 0, is Gaussian

Measured data for further horse compared with these PDFs
and decision made on whether horse has been doped

Candidate example for JCGM conformity assessment document
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Propagation of distributions and Markov’s theorem

Obtaining p(Y ) given PDF p(X)

Formally, apply Markov’s theorem (see Cox & Siebert, 2006)

p(Y ) =
∫ ∞
−∞
· · ·

∫ ∞
−∞

p(X)δ(η − f(X)) dX

-

p(X3)

-

p(X2)

-

p(X1) Comput-
ational
model

Y = f(X)

-

p(Y )

p(Y ) often asymmetric for non-linear f(X) or asymmetric p(Xi)
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Approach

Quadrature rule can be applied, but inefficiently, to evaluate

integral, so as to provide approximation p̂(Y ) to p(Y )

Approach commonly used to obtain a p̂(Y ) is an MC method

as in GUM Supplement 1

Make random draws from p(X), evaluate f in each case, and

use resulting set of values to form p̂(Y )

Applies when p(X) does not depend on measurand
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Bayes

When observations of an Xi are available, observation equation
(OE) approach is appropriate, and Bayes’ rule can be used to
determine p(Y )

Let X denote the original X less W , one of the Xi that is
observable

Re-express ME as Y = f(W,X) and consider the OE
W = φ(Y ,X) (Possolo & Toman 2007, Forbes and Sousa
2011) and observations Wi ∈ N(W,σ2)

Bayes’ rule used to update prior knowledge of Y , X and σ2

(regarded as random variables) with observations Wi to give
posterior distribution, with p(Y ) obtained by marginalization
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MCMC

An MCMC algorithm can be used to obtain p̂(Y )

Generates sequence {yk} in which yk is obtained from yk−1

Asymptotically generates draws from p(Y )

Metropolis-Hastings algorithm: MCMC algorithm that

allows p(Y ) to be specified straightforwardly
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Numerical quality of Monte Carlo results

When making draws from p(X), that PDF can often be

decomposed into univariate PDFs or joint PDFs involving

smaller number of variables

Procedures for sampling from variety of PDFs commonly

occurring in metrology such as normal, multinormal, t and

arcsine summarized in JCGM Supplement 1

Rely on quality of uniform RNG: high-quality generators

available that pass extensive tests of statistical properties

RNG on distributed computing systems: Wichmann & Hill

(2006)
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Monte Carlo convergence

Suppose M random draws made from joint PDF for Y and

corresponding model values f calculated

Closeness of agreement between average of these values and

E(Yj) expected to be proportional to M−1/2

‘Convergence rate’ can be improved for certain classes of

problem by using schemes such as Latin Hypercube sampling

(LHS)
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Adaptive schemes

Above approach necessitates specifying M in advance

Thus, numerical accuracy of results obtained unknown a priori

An adaptive scheme, designed to meet a specified numerical
tolerance δ, provides information required by metrologists:

1. estimate y of Y

2. associated covariance matrix Uy

3. coverage region for Y for a stipulated coverage probability p
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Approach

An approach, involving carrying out sequence of applications
of MCM operates in terms of δ and a sequence of batches of
say M0 = 104 MC trials:

1. Carry out a batch of MC trials and use model values to
calculate batch results (averages, standard deviations, etc.)

2. Use updating techniques to calculate results for all batches

3. Regard computation as having stabilized when standard
deviations of average of batch results ≤ δ

Can be tailored to other sampling procedures such as LHS
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Representation of MC results for . . .

(a) visualization purposes (e.g., surfaces, contours),
(b) subsequent MU evaluation

Regarding (b) the output of one MU evaluation should be
transferable, i.e., usable as input to further evaluation (GUM)

In particular, not always convenient to retain the M = 106, say,
(vector) values produced by MC and use them subsequently

But, MC output ideal in that it automatically conveys
covariance information, which can subsequently be sampled

Methods such as kernel density estimation (or, better,
approximation) can be used for (a) and (b)
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Memory, time and other considerations

Possible problems when M large, say O(107). At NPL we

1. Perform a modest number, say M0 = 104, of MC trials

2. Establish set of bins based on these trials

3. Make further M −M0 trials, allocating to bins or, when
outside bins, saving individually

Bins, bin frequencies and further values used to obtain results

Advantages in providing coverage intervals and regions, which
depend crucially on tail information
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Density approximation

Kernel density approximation (KDA) to obtain a p̂(Y ) from
sampled values (not yet used greatly in metrology)

KDA to a univariate PDF p(Y ):

p̂h(Y ) =
1

Mh

M∑
r=1

K

(
Y − yr
h

)
y1, . . . , yM are sampled values with underlying density p, and K

is a kernel function with unit area

Common kernel functions are Gaussian and B-spline

B-splines have appreciable speed advantages when sampling
from p̂h
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Smoothing parameter

h is a smoothing parameter, the bandwidth, and plays a similar
role to that of bin width in a histogram

Too small an h: spurious behaviour
Too large an h: over-smoothing, losing local detail
Determination of h: Silverman (1986), Sheather (2004)
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KDAs and parametric forms

A (conventional) KDA has the same information content as the
data it represents

With M often O(107), possible to produce KDAs with many
fewer terms

Also possible to describe the xr by some parametric form with
adjustable parameters, e.g., Willink (2009) uses an asymmetric
form of ‘lambda distribution’

Distribution defined by quantile function (inverse distribution
function): only 4 parameters, so sampling straightforward

Should this approximation be inadequate in any particular case,
a KDA can be used
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Contouring

Bivariate PDF sometimes represented by set of contour lines

Contour lines should be faithfully reproduced: as M →∞, they

converge to the contours of the corresponding PDF

Appropriate smoothing needed (Silverman 1986, Scott et al

2004)

Some contour diagrams can be computed directly from a KDA

(or some other approximation to the corresponding PDF)

For others an appropriate smoothing algorithm can be applied

to the MC results and the resulting smoothed contours drawn
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Example: without and with smoothing
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Coverage regions

In metrology coverage intervals and coverage regions frequently

required to accompany measurement results

A procedure (Possolo, 2010), provides an approximation to the

smallest 100p% coverage region

Included in GUM Supplement 2
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1. Construct a rectangular region in space of output quantities

2. Subdivide this region into mesh of small rectangles

3. Assign each output quantity value to rectangle containing it

4. Use the fraction of the values assigned to each rectangle as
the approximate probability that Y lies in that rectangle

5. List the rectangles in terms of decreasing probability

6. Form cumulative sum of probabilities for these listed
rectangles: stop when sum ≥ p, taking chosen rectangles as
defining smallest coverage region
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Example of smallest coverage region

Model Y1 = X1 +X3, Y2 = X2 +X3, with independent
X1 ∼ N(0,0.1), X2 ∼ N(0,0.1), X3 ∼ R(−(5.7)1/2, (5.7)1/2)

Approximations to smallest 95 % coverage region, obtained
using procedure, based on a 10× 10 and a 100× 100 mesh

95 % elliptical coverage region (shown by solid line) for Y
based on Gaussian parameters estimated from model values
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Uncertainty budget and sensitivity coefficients

Uncertainty budget: quantifies uncertainty contributions

Sensitivity: ci = ∂f
∂Xi

evaluated at x

(First-order) uncertainty contribution: ui(y) = |ci|u(xi)

Complex-step method (Lyness and Moler, 1967) to obtain ci:
deserves greater recognition

Applicable when real types can be replaced by complex types

‘Non-linear’ sensitivity coefficient: Carry out MU evaluation by
MC, holding all inputs but one at their estimates

Might be unreliable if there are interaction terms
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Complex-step method

Provides numerically accurate first derivatives (does not extend
to higher-order)

Uses Taylor expansion of function f of a complex variable:

f(z + w) =
∞∑
r=0

wr

r!
f(r)(z)

Setting z = x and w = ih where x is real and h is real and small,
and taking real and imaginary parts:

<f(x+ih) = f(x)−
h2

2
f ′′′(x)+. . . , =f(x+ih) = hf ′(x)−

h3

6
f ′′′(x)+. . .

from which, with truncation errors O(h2)

f(x) = <f(x+ ih), f ′(x) =
1

h
=f(x+ ih)
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Practicalities

Unlike use of finite-difference formula for f ′(x), h chosen to be

very small

No concern about loss of significant digits through cancellation

since no subtraction is involved

h = 10−100 in NPL’s software (Higham et al, 2010), suitable

for all but pathologically-scaled problems

NPL routinely applies the complex-step method
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Concluding remarks and forward look

Intensive computation beyond GUM

Infrastructure in place to deal with MU when expressed as u(y)
or U(y) for some coverage probability p

GUM goals—universal, internally consistent and transferable
framework—largely achieved

When MU expressed using PDFs, MU evaluation needs
(possibly intensive) computation, and generates data to be
represented suitably

Many measurement models can only be treated numerically

Example: radiation-transport calculation, itself an MC
calculation
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Efficiency

With MU evaluation, need for more efficient techniques for

propagating PDFs

MC naturally highly parallelizable (NPL uses a grid of PCs to

treat complex computational models)

As all such techniques are based on MC, it is a matter of

tuning those techniques appropriately

For some problems the basic technique can hardly be bettered

Approaches such as LHS can give appreciable gains for certain

classes of problem
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Embracing UQ

In future, MU evaluation to embrace more strongly concepts

used in UQ

Model uncertainty recognized, being termed definitional

uncertainty (VIM)

Elicitation so far hardly treated in metrology

Numerical uncertainty considered when computational models

constitute FE solvers, e.g., or in using adaptive schemes (GUM

Supplement 1)
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Embracing UQ

As with general UQ, main aim to provide probabilistic

statements about quantities of interest to inform decision

makers

A politician or manufacturing production manager considers

evidence and decides course of action to achieve some goal

Decisions: A process remaining under statistical control?

An athlete (or animal) regarded as using banned substance?

Tools requiring development for MU evaluation
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Use of MAXENT

Other metrological applications could benefit from the

approach to the horse-doping problem (Hibbert, 2011)

Numerical difficulties, though, can give rise to ill-determined

PDFs or prevent a PDF from being obtained at all when

MAXENT is applied to moments (Lira, 2002)

These difficulties arise when metrological problem ‘unrealistic’

in that it relates to a poor measurement of a quantity

Useful to have a characterization of such problems
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Efficiency of KDA forms

Compact form for p̂(Y ) desirable when used as input to
subsequent MU evaluation

Either (a) assemble MC results as histogram and use KDA, or
(b) represent ordered MC results by suitable monotonic
approximating CDF

KDA choice: Gaussians, B-splines, . . .

For (a), evaluation efficiency of inverse CDF, when generating
draws from distribution using B-spline representation, because
of compact support of B-splines

For (b), CDF can be differentiated to form corresponding PDF
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Calibration certificates in the future

Conveying results from MC calculation, particularly in the

presence of asymmetric PDFs, etc.

Summarizing

Advice to NMIs and industry

Acceptance by accreditation bodies
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