
Using Emulators to
Estimate Uncertainty in

Complex Models
Peter Challenor and the MUCM Team

• Consider CENTURY, a model of soil carbon processes

• Initial conditions: 8 carbon pools

• Other contextual data: 3 soil texture inputs
• Sand, clay, silt

• Exogenous data: 3 climate inputs for each monthly time
step

• Parameters: coded in differential equations

The CENTURY model

Input uncertainty

• We are typically uncertain about the values of many of
the inputs

• Measurement error, lack of knowledge
• E.g. CENTURY

• Texture, initial carbon pools, (future) climate

Input uncertainty

• We are typically uncertain about the values of many of
the inputs

• Measurement error, lack of knowledge
• E.g. CENTURY

• Texture, initial carbon pools, (future) climate

• Input uncertainty should be expressed as a probability
distribution

• Across all uncertain inputs
• Model users are often reluctant to specify more than

plausible bounds
• Inadequate to characterise output uncertainty

Input uncertainty

Output uncertainty

• Input uncertainty induces uncertainty in the output y

Output uncertainty

• Input uncertainty induces uncertainty in the output y
• It also has a probability distribution

• In theory, this is completely determined by
• the probability distribution on x
• and the model f
• In practice, finding this distribution and its properties is

not straightforward

Output uncertainty

A trivial model

• Suppose we have just two inputs and a simple linear
model

	

 	

 y = x1 + 3x2

A trivial model

• Suppose we have just two inputs and a simple linear
model

	

 	

 y = x1 + 3x2

• Suppose that x1 and x2 have independent uniform
distributions over [0, 1]

• i.e. they define a point that is equally likely to be anywhere in
the unit square

A trivial model

• Suppose we have just two inputs and a simple linear
model

	

 	

 y = x1 + 3x2

• Suppose that x1 and x2 have independent uniform
distributions over [0, 1]

• i.e. they define a point that is equally likely to be anywhere in
the unit square

• Then we can determine the distribution of y exactly

A trivial model

• The distribution of y has this trapezium form

Trivial model – output distribution

• If x1 and x2 have normal distributions N(0.5, 0.252) we get a
normal output

Trivial model – normal inputs

A slightly less trivial model

• Now consider the simple nonlinear model
	

 	

 y = sin(x1)/{1+exp(x1+x2)}
• We still have only 2 inputs and quite a simple equation

A slightly less trivial model

• Now consider the simple nonlinear model
	

 	

 y = sin(x1)/{1+exp(x1+x2)}
• We still have only 2 inputs and quite a simple equation

• But even for nice input distributions we cannot get the
output distribution exactly

A slightly less trivial model

• Now consider the simple nonlinear model
	

 	

 y = sin(x1)/{1+exp(x1+x2)}
• We still have only 2 inputs and quite a simple equation

• But even for nice input distributions we cannot get the
output distribution exactly

• The simplest way to compute it would be by Monte
Carlo

A slightly less trivial model

• This is for the normal inputs

• 10,000 random normal pairs were generated and y calculated for
each pair

Monte Carlo output distribution

Uncertainty analysis (UA)

• The process of characterising the distribution of the
output y is called uncertainty analysis

Uncertainty analysis (UA)

• The process of characterising the distribution of the
output y is called uncertainty analysis

• Plotting the distribution is a good graphical way to
characterise it

Uncertainty analysis (UA)

• The process of characterising the distribution of the
output y is called uncertainty analysis

• Plotting the distribution is a good graphical way to
characterise it

• Quantitative summaries are often more important
• Mean, median
• Standard deviation, quartiles
• Probability intervals

Uncertainty analysis (UA)

UA versus plug-in

• Even if we just want to estimate y, UA does better than
the “plug-in” approach of running the model for estimated
values of x

• For the simple nonlinear model, the central estimates of x1
and x2 are 0.5, but

	

 	

 sin(0.5)/(1+exp(1)) = 0.129
	

 is a slightly too high estimate of y compared with the mean
	

 of 0.117 or median of 0.122

UA versus plug-in

• Even if we just want to estimate y, UA does better than
the “plug-in” approach of running the model for estimated
values of x

• For the simple nonlinear model, the central estimates of x1
and x2 are 0.5, but

	

 	

 sin(0.5)/(1+exp(1)) = 0.129
	

 is a slightly too high estimate of y compared with the mean
	

 of 0.117 or median of 0.122

• The difference can be much more marked for highly
nonlinear models

• As is often the case with serious simulators

UA versus plug-in

Example: UK carbon flux in 2000

• Vegetation model predicts carbon exchange from each of
700 pixels over England & Wales in 2000

• Principal output is Net Biosphere Production

Example: UK carbon flux in 2000

• Vegetation model predicts carbon exchange from each of
700 pixels over England & Wales in 2000

• Principal output is Net Biosphere Production
• Accounting for uncertainty in inputs
• Soil properties
• Properties of different types of vegetation
• Land usage
• (Not structural uncertainty)

Example: UK carbon flux in 2000

• Vegetation model predicts carbon exchange from each of
700 pixels over England & Wales in 2000

• Principal output is Net Biosphere Production
• Accounting for uncertainty in inputs
• Soil properties
• Properties of different types of vegetation
• Land usage
• (Not structural uncertainty)
• Aggregated to England & Wales total
• Allowing for correlations
• Estimate 7.46 Mt C
• Std deviation 0.54 Mt C

Example: UK carbon flux in 2000

Mean NBP Standard
deviation

Maps

PFT
Plug-in estimate

(MtC)

Mean

(MtC)

Variance

(MtC2)

Grass 5.28 4.37 0.2453

Crop 0.85 0.43 0.0327

Deciduous 2.13 1.80 0.0221

Evergreen 0.80 0.86 0.0048

Covariances -0.0081

Total 9.06 7.46 0.2968

England & Wales aggregate

Reducing uncertainty

• To reduce uncertainty, get more information!

Reducing uncertainty

• To reduce uncertainty, get more information!

• Informal – more/better science
• Tighten p(x) through improved understanding
• Tighten p(z-y) through improved modelling or programming

Reducing uncertainty

• To reduce uncertainty, get more information!

• Informal – more/better science
• Tighten p(x) through improved understanding
• Tighten p(z-y) through improved modelling or programming

• Formal – using real-world data
• Calibration – learn about model parameters
• Data assimilation – learn about the state variables
• Learn about structural error z-y
• Validation

Reducing uncertainty

• In principle, all this is straightforward

• In practice, there are many technical difficulties
• Formulating uncertainty on inputs

• Elicitation of expert judgements

• Propagating input uncertainty
• Modelling structural error
• Anything involving observational data!
• The last two are intricately linked

• And computation

So far, so good, but

The problem of big models

• Tasks like uncertainty propagation and calibration require
us to run the simulator many times

The problem of big models

• Tasks like uncertainty propagation and calibration require
us to run the simulator many times

• Uncertainty propagation
• Implicitly, we need to run f(x) at all possible x
• Monte Carlo works by taking a sample of x from p(x)
• Typically needs thousands of simulator runs

The problem of big models

• Tasks like uncertainty propagation and calibration require
us to run the simulator many times

• Uncertainty propagation
• Implicitly, we need to run f(x) at all possible x
• Monte Carlo works by taking a sample of x from p(x)
• Typically needs thousands of simulator runs

• Calibration
• Traditionally done by searching x space for good fits to the data

The problem of big models

• Tasks like uncertainty propagation and calibration require
us to run the simulator many times

• Uncertainty propagation
• Implicitly, we need to run f(x) at all possible x
• Monte Carlo works by taking a sample of x from p(x)
• Typically needs thousands of simulator runs

• Calibration
• Traditionally done by searching x space for good fits to the data

• Both become impractical if the simulator takes more than
a few seconds to run

• 10,000 runs at 1 minute each takes a week of computer time
• We need a more efficient technique

The problem of big models

Gaussian process representation

• More efficient approach
• First work in early 1980s (DACE)

Gaussian process representation

• More efficient approach
• First work in early 1980s (DACE)

• Represent the code as an unknown function
• f(.) becomes a random process
• We generally represent it as a Gaussian process (GP)

• Or its second-order moment version (so called Bayes Linear)

Gaussian process representation

• More efficient approach
• First work in early 1980s (DACE)

• Represent the code as an unknown function
• f(.) becomes a random process
• We generally represent it as a Gaussian process (GP)

• Or its second-order moment version (so called Bayes Linear)

• Training runs
• Run simulator for sample of x values
• Condition GP on observed data
• Typically requires many fewer runs than Monte Carlo

• And the x values don’t need to be chosen randomly

Gaussian process representation

• Analysis is completed by prior distributions for, and
posterior estimation of, hyperparameters

• The posterior distribution is known as an emulator of
the computer simulator

• Posterior mean estimates what the simulator would produce
for any untried x (prediction)

• With uncertainty about that prediction given by posterior
variance

• Correctly reproduces training data

Emulation

• Consider one input and one output

• Emulator estimate interpolates data

• Emulator uncertainty grows between data points

2 code runs

• Adding another point changes estimate and reduces uncertainty

3 code runs

• And so on

5 code runs

Then what?

• Given enough training data points we can in principle
emulate any simulator output accurately

• So that posterior variance is small “everywhere”
• Typically, this can be done with orders of magnitude fewer

model runs than traditional methods
• At least in relatively low-dimensional problems

Then what?

• Given enough training data points we can in principle
emulate any simulator output accurately

• So that posterior variance is small “everywhere”
• Typically, this can be done with orders of magnitude fewer

model runs than traditional methods
• At least in relatively low-dimensional problems

• Use the emulator to make inference about other things
of interest

• E.g. uncertainty analysis, calibration

Then what?

• Given enough training data points we can in principle
emulate any simulator output accurately

• So that posterior variance is small “everywhere”
• Typically, this can be done with orders of magnitude fewer

model runs than traditional methods
• At least in relatively low-dimensional problems

• Use the emulator to make inference about other things
of interest

• E.g. uncertainty analysis, calibration
• Conceptually very straightforward in the Bayesian

framework
• But of course can be computationally hard

Then what?

MUCM

• Managing Uncertainty in Complex Models
• Universities of Sheffield, Aston, Durham, LSE, NOC
• Large 4-year research grant
• June 2006 to September 2010
• 7 postdoctoral research associates
• 4 project PhD students
• Objective to develop BACCO methods into a basic

technology, usable and widely applicable

MUCM

• Managing Uncertainty in Complex Models
• Universities of Sheffield, Aston, Durham, LSE, NOC
• Large 4-year research grant
• June 2006 to September 2010
• 7 postdoctoral research associates
• 4 project PhD students
• Objective to develop BACCO methods into a basic

technology, usable and widely applicable

• MUCM2: New directions for MUCM
• Smaller 2-year grant to September 2012
• Scoping and developing research proposals

MUCM

Primary MUCM deliverables

• Methodology and papers moving the technology forward
• Papers both in statistics and application area journals

Primary MUCM deliverables

• Methodology and papers moving the technology forward
• Papers both in statistics and application area journals
• The MUCM toolkit
• Documentation of the methods and how to use them
• With emphasis on what is found to work reliably across a range

of modelling areas
• Web-based

Primary MUCM deliverables

• Methodology and papers moving the technology forward
• Papers both in statistics and application area journals
• The MUCM toolkit
• Documentation of the methods and how to use them
• With emphasis on what is found to work reliably across a range

of modelling areas
• Web-based
• Case studies
• Three substantial case studies
• Showcasing methods and best practice
• Linked to toolkit

Primary MUCM deliverables

• Methodology and papers moving the technology forward
• Papers both in statistics and application area journals
• The MUCM toolkit
• Documentation of the methods and how to use them
• With emphasis on what is found to work reliably across a range

of modelling areas
• Web-based
• Case studies
• Three substantial case studies
• Showcasing methods and best practice
• Linked to toolkit
• Events
• Workshops – conceptual and hands-on
• Short courses
• Conferences – UCM 2010, UCM 2012

Primary MUCM deliverables

• The toolkit is a ‘recipe book’
• The good sort that encourages you to experiment
• There are recipes (procedures) but also lots of explanation

of concepts and discussion of choices

• It is not a software package
• Software packages are great if they are in your favourite

language
• But it probably wouldn’t be!

• Packages are dangerous without basic understanding

• The purpose of the toolkit is to build that understanding
• And it enables you to easily develop your own code
• Over 300 pages

Focus on the toolkit

Toolkit Structure

• Built around a number of ‘threads’

• Two core threads (GP and BL)

• 5 variant threads

• 4 generic threads

• 3 topic threads

• Over 300 pages in all

GP and Bayes Linear

• Two fundamental approaches to building emulators

• GP - Gaussian process. Assumes a Gaussian distribution.
Requires distributional priors but these can be improper

• BL – Bayes Linear. No distributional assumptions. Only
first and second moments. Priors only in terms of
moments. Fast.

The Core Problem

• This includes only one simulator

• The simulator has only one output

• The output is deterministic

• We do not have observations of the real world process against
which to compare the simulator

• We do not wish to make statements about the real world process

• We cannot directly observe simulator derivatives

Steps in building an emulator

• Specify the Gaussian process (or BL)model

• Select the prior distributions for the GP
hyperparameters

• Choose a design for training and validation

• Fit the emulator to the simulator runs

• Validate and re-fit if needed

Inputs: 	

 18 initial surface temperatures +8 others
Outputs:	

 18 final temperatures + 4 others
We use the mean surface temperature as our output
Vary solar constant

Simple Example:
Energy Balance Model

Specifying the GP model

• The first step in building an emulator is the specification of the
Gaussian process model

• This consists of specifying the mean

• ... alternatives for the mean function are given in page
AltMeanFunction

• and the specification of the correlation function

• ... alternatives for the correlation function are given in page
AltCorrelationFunction

Example: The GP model

• Mean function

• Correlation function

Priors

• The GP model depends on a number of hyperparameters,
which typically are:

• β : mean function hyperparameters

• σ2 : GP variance

• δ : Correlation lengths

• A fully Bayesian approach requires the specification of
prior distributions for each of these hyperparameters (BL
only needs moments)

Design

• We need to design a set of simulator runs to span input
space

• Common designs are optimised Latin Hypercubes and
quasi-Monte Carlo sequences (AltCoreDesign or
ThreadTopicExperimentalDesign)

• For our example these reduce to equally spaced points

Example

Validation

• Produce new set of simulator runs

• Compare true values with the emulator

• Generalisation of regression diagnostics (Bastos and
O’Hagan, 2009)

• Over confident and under confident emulators

Not Just Toy Models

Courtesy Robin Tokmakian NPS

Not Just Toy Models

Courtesy Robin Tokmakian NPS

Beyond the Core

• The core problem is the simplest method.

• More complex methods are built on this.

• ThreadVariantMultipleOutputs

• ThreadVariantDynamic

• ThreadVariantTwoLevelEmulation

• ThreadVariantWithDerivatives

• ThreadVariantModelDiscrepancy

• ThreadGenericMultipleEmulators

• ThreadGenericEmulateDerivatives

• ThreadGenericHistoryMatching

Multiple Outputs

Multiple Outputs

Calibration and History Matching

• Simulator users often want to tune the simulator using
observations of the real system

Calibration and History Matching

• Simulator users often want to tune the simulator using
observations of the real system

• Calibration finds estimates and uncertainties for the ‘best’
inputs

Calibration and History Matching

• Simulator users often want to tune the simulator using
observations of the real system

• Calibration finds estimates and uncertainties for the ‘best’
inputs

• History Matching finds regions of ‘not implausible inputs’

Calibration and History Matching

• Simulator users often want to tune the simulator using
observations of the real system

• Calibration finds estimates and uncertainties for the ‘best’
inputs

• History Matching finds regions of ‘not implausible inputs’

• Two very important points

1. Calibration will reduce uncertainty about x but will not
eliminate it

2. It is necessary to understand how the simulator relates to
reality

• Model discrepancy

Calibration and History Matching

Model discrepancy

• Simulator output y = f(x) will not equal the real system
value z
• Even with best/correct inputs x

Model discrepancy

• Simulator output y = f(x) will not equal the real system
value z
• Even with best/correct inputs x

• Model discrepancy is the difference z – f(x)

Model discrepancy

• Simulator output y = f(x) will not equal the real system
value z
• Even with best/correct inputs x

• Model discrepancy is the difference z – f(x)
• Can be expressed a mean (z – f(x)) or a variance (z – f(x))2

Model discrepancy

• Simulator output y = f(x) will not equal the real system
value z
• Even with best/correct inputs x

• Model discrepancy is the difference z – f(x)
• Can be expressed a mean (z – f(x)) or a variance (z – f(x))2

• Model discrepancy is due to

• Wrong or incomplete science

• Programming errors, rounding errors

• Inaccuracy in numerically solving systems of equations

Model discrepancy

• Simulator output y = f(x) will not equal the real system
value z
• Even with best/correct inputs x

• Model discrepancy is the difference z – f(x)
• Can be expressed a mean (z – f(x)) or a variance (z – f(x))2

• Model discrepancy is due to

• Wrong or incomplete science

• Programming errors, rounding errors

• Inaccuracy in numerically solving systems of equations

• Ignoring model discrepancy leads to poor calibration

• Over-fitting of parameter estimates

• Over-confidence in the fitted values

Model discrepancy

History Matching

• Define a measure of implausibility (Imp)

• If the implausibility is greater then ±3 those values of the
inputs are deemed implausible

• Because this is a function of the emulator not the original
simulator runs we calculate it everywhere in input space

Implausibility

• Wave 1: Apply the implausibility measure. Mark part of
input space as implausible

• Wave 2: Add extra points in the not implausible region
and rebuild the emulator. Repeat the implausibility measure

• Wave 3+: Repeat until the implausible region ceases to
grow

Waves of Implausibility

A 1-d example

Thanks to Ian Vernon U. Durham

Example -Galform

• Galform is a simulator of Galaxy formation

• It has 17 inputs

• The amount of not implausible space in each wave is

• None of the original 1000 member LHC was an acceptable fit to the
data

Wave	
 1 14.9%	
 	

Wave	
 2 5.9%

Wave	
 3 1.6%

Wave	
 4 0.26%

Wave	
 5 0.036%

Example - Galform

• Galform is a simulator of Galaxy formation

• It has 17 inputs

• The amount of not implausible space in each wave is

• None of the original 1000 member LHC was an acceptable fit to the
data

Wave	
 1 14.9%	
 	

Wave	
 2 5.9%

Wave	
 3 1.6%

Wave	
 4 0.26%

Wave	
 5 0.036%

Example - Galform

Calibration

Calibration
• We can also calibrate the simulator(possibly after history

matching)

• Include a model discrepancy term

• Reality = simulator + discrepancy

Calibration
• We can also calibrate the simulator(possibly after history

matching)

• Include a model discrepancy term

• Reality = simulator + discrepancy

Calibration

• Split the inputs in control inputs (xcon) and calibration
inputs (xcal)

• Simultaneously fit a GP to both the simulator output and
the discrepancy

• Obtain posteriors for the the best inputs, the
observational error, the emulator and the discrepancy
function

• We can also calibrate the simulator(possibly after history
matching)

• Include a model discrepancy term

• Reality = simulator + discrepancy

Calibration

• Split the inputs in control inputs (xcon) and calibration
inputs (xcal)

• Simultaneously fit a GP to both the simulator output and
the discrepancy

• Obtain posteriors for the the best inputs, the
observational error, the emulator and the discrepancy
function

• We can also calibrate the simulator(possibly after history
matching)

• Include a model discrepancy term

• Reality = simulator + discrepancy

Stochastic Simulators

• Some simulators are not deterministic

• Current work looks at emulating means and variances in
a linked way

• Design

• Extremes

• Not in the toolkit - yet

Conclusions

• Emulators can be used to quantify uncertainty in
complex systems

• The MUCM toolkit is a useful resource

• Updated every 3 months

• Comments/feedback needed

• Next update imminent!

• Still work to do - we are not finished yet

