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The CENTURY model

Consider CENTURY, a model of soil carbon processes
Initial conditions: 8 carbon pools

Other contextual data: 3 soil texture inputs

Sand, clay, silt

Exogenous data: 3 climate inputs for each monthly time
step

Parameters: coded in differential equations
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* Measurement error, lack of knowledge
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Input uncertainty

We are typically uncertain about the values of many of
the inputs

Measurement error, lack of knowledge
E.e. CENTURY

Texture, initial carbon pools, (future) climate

Input uncertainty should be expressed as a probability
distribution

Across all uncertain inputs

Model users are often reluctant to specify more than
plausible bounds

Inadequate to characterise output uncertainty
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Output uncertainty

Input uncertainty induces uncertainty in the output y
It also has a probability distribution

In theory, this is completely determined by

the probability distribution on x

and the model f

In practice, finding this distribution and its properties is
not straightforward
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A trivial model

Suppose we have just two inputs and a simple linear
model

y =Xx; + 3%,
Suppose that x; and x, have independent uniform

distributions over [0, I]

i.e. they define a point that is equally likely to be anywhere in
the unit square

Then we can determine the distribution of y exactly




Trivial model — output distribution

0 ,
I 2 y 3 4

* The distribution of y has this trapezium form




Trivial model — normal inputs

0.2
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* If x; and x, have normal distributions N(0.5, 0.252%) we get a
normal output
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* We still have only 2 inputs and quite a simple equation
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A slightly less trivial model

Now consider the simple nonlinear model
y = sin(x;)[{1+exp(x;+x,)}
WVe still have only 2 inputs and quite a simple equation

But even for nice input distributions we cannot get the
output distribution exactly

The simplest way to compute it would be by Monte
Carlo




Monte Carlo output distribution

|y sample: 10000
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* This is for the normal inputs

* 10,000 random normal pairs were generated and y calculated for
each pair
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Uncertainty analysis (UA)

The process of characterising the distribution of the
output y is called uncertainty analysis

Plotting the distribution is a good graphical way to
characterise it

Quantitative summaries are often more important
Mean, median
Standard deviation, quartiles

Probability intervals
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* Even if we just want to estimate y, UA does better than
the “plug-in” approach of running the model for estimated

values of x

+  For the simple nonlinear model, the central estimates of x;
and x, are 0.5, but

sin(0.5)/(1+exp(1)) = 0.129

is a slightly too high estimate of y compared with the mean
of 0.1 17 or median of 0.122




UA versus plug-in

* Even if we just want to estimate y, UA does better than

the “plug-in” approach of running the model for estimated
values of x

+  For the simple nonlinear model, the central estimates of x;
and x, are 0.5, but

sin(0.5)/(1+exp(1)) = 0.129

is a slightly too high estimate of y compared with the mean
of 0.1 17 or median of 0.122

* The difference can be much more marked for highly
nonlinear models

* As is often the case with serious simulators
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Example: UK carbon flux in 2000

* Vegetation model predicts carbon exchange from each of
700 pixels over England & Wales in 2000

Principal output is Net Biosphere Production
* Accounting for uncertainty in inputs

*  Soil properties
*  Properties of different types of vegetation
* Land usage
* (Not structural uncertainty)
* Aggregated to England & Wales total
* Allowing for correlations
 Estimate 7.46 Mt C
* Std deviation 0.54 Mt C




Mean NBP Standard
deviation




England & Wales aggregate

PFT

Plug-in estimate

(MtC)

Mean

(MtC)

Variance

(MtC?)

Grass

5.28

4.37

0.2453

Crop

0.85

0.43

0.0327

Deciduous

2.13

.80

0.0221

Evergreen

0.80

0.86

0.0048

Covariances

-0.0081

Total

0.2968
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Tighten p(x) through improved understanding
Tighten p(z-y) through improved modelling or programming




Reducing uncertainty

To reduce uncertainty, get more information!
Informal — more/better science

Tighten p(x) through improved understanding

Tighten p(z-y) through improved modelling or programming
Formal — using real-world data

Calibration — learn about model parameters

Data assimilation — learn about the state variables

Learn about structural error z-y
Validation




So far, so good, but

In principle, all this is straightforward
In practice, there are many technical difficulties
Formulating uncertainty on inputs
Elicitation of expert judgements
Propagating input uncertainty
Modelling structural error
Anything involving observational data!
The last two are intricately linked

And computation
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The problem of big models

* Tasks like uncertainty propagation and calibration require
us to run the simulator many times
Uncertainty propagation
Implicitly, we need to run f(x) at all possible x
Monte Carlo works by taking a sample of x from p(x)

Typically needs thousands of simulator runs

Calibration
Traditionally done by searching x space for good fits to the data
Both become impractical if the simulator takes more than

a few seconds to run
* 10,000 runs at | minute each takes a week of computer time

We need a more efficient technique
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Gaussian process representation

* More efficient approach
 First work in early 1980s (DACE)
* Represent the code as an unknown function

°* f(.) becomes a random process

*  We generally represent it as a Gaussian process (GP)

Or its second-order moment version (so called Bayes Linear)
* Training runs
* Run simulator for sample of x values
*  Condition GP on observed data

» Typically requires many fewer runs than Monte Carlo

And the x values don’t need to be chosen randomly




Emulation

Analysis is completed by prior distributions for, and
posterior estimation of, hyperparameters

The posterior distribution is known as an emulator of

the computer simulator
Posterior mean estimates what the simulator would produce
for any untried x (prediction)

With uncertainty about that prediction given by posterior
variance

Correctly reproduces training data




2 code runs

Consider one input and one output

Emulator estimate interpolates data
Emulator uncertainty grows between data points

10 —




3 code runs

Adding another point changes estimate and reduces uncertainty




5 code runs

* Andsoon

o =2 N W & O O N O ©
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Given enough training data points we can in principle
emulate any simulator output accurately

So that posterior variance is small “everywhere”

Typically, this can be done with orders of magnitude fewer
model runs than traditional methods

At least in relatively low-dimensional problems
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Then what!?

Given enough training data points we can in principle
emulate any simulator output accurately

So that posterior variance is small “everywhere”

Typically, this can be done with orders of magnitude fewer
model runs than traditional methods

At least in relatively low-dimensional problems

Use the emulator to make inference about other things
of interest

E.g. uncertainty analysis, calibration

Conceptually very straightforward in the Bayesian
framework

But of course can be computationally hard
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technology, usable and widely applicable




MUCM

Managing Uncertainty in Complex Models
Universities of Sheffield, Aston, Durham, LSE, NOC
Large 4-year research grant

June 2006 to September 2010

/ postdoctoral research associates

4 project PhD students

Obijective to develop BACCO methods into a basic

tec

hnology, usable and widely applicable

MU

CM2: New directions for MUCM

Smaller 2-year grant to September 2012

Scoping and developing research proposals
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Primary MUCM deliverables

Methodology and papers moving the technology forward
Papers both in statistics and application area journals

The MUCM toolkit

Documentation of the methods and how to use them

With emphasis on what is found to work reliably across a range
of modelling areas

Web-based

Case studies

Three substantial case studies
Showcasing methods and best practice
Linked to toolkit

Events

Workshops — conceptual and hands-on
Short courses

Conferences — UCM 2010, UCM 2012




Focus on the toolkit

The toolkit is a ‘recipe book’

The good sort that encourages you to experiment

There are recipes (procedures) but also lots of explanation
of concepts and discussion of choices

* |t is not a software package

Software packages are great if they are in your favourite
language
But it probably wouldn’t be!
Packages are dangerous without basic understanding
* The purpose of the toolkit is to build that understanding

* And it enables you to easily develop your own code
* Over 300 pages
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The MUCM Toolkit, release 7

Welcome to the MUCM Toolkit. The toolkit is a resource for people interested in quantifying and managing uncertainty in the
outputs of mathematical models of complex real-world processes. We refer to such a model as a simulation model or a
simulator.

The toolkit is a large, interconnected set of webpages and one way to use it is just to browse more or less randomly through it.
However, we have also provided some organised starting points and threads through the toolkit.

e We have an introductory tutorial on MUCM methods and uncertainty in simulator outputs here.

* You can read about the toolkit structure.

* The various threads, each of which sets out in a series of steps how to use the MUCM approach to build an emulator of a
simulator and to use it to address some standard problems faced by modellers and users of simulation models. This
release contains the following threads:

© ThreadCoreGP, which deals with the simplest emulation scenario, called the core problem, using the Gaussian
process approach;
ThreadCoreBL, which also deals with the core problem, but follows the Bayes linear approach. A simple guide to the
differences between the two approaches can be found in the alternatives page on Gaussian process or Bayes Linear
Emulator (AltGPorBLEmulator);

ThreadVariantMultipleOutputs, which extends the core problem to address the case where we wish to emulate two
or more simulator outputs;

ThreadVariantDynamic, which extends the core analysis in a different direction, where we wish to emulate the time
series output of a dynamic simulator;

ThreadVariantTwolLevelEmulation, which considers the situation where we have two simulators of the same real-
world phenomenon, a slow but relatively accurate simulator whose output we wish to emulate, and a guick and
relatively crude simulator. This thread discusses how to use many runs of the fast simulator to build an informative

Page 1of 3
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prior model for the slow simulator, so that fewer training runs of the slow simulator are needed;
ThreadVariantWithDerivatives, which extends the core analysis for the case where we can obtain derivatives of the
simulator output with respect to the various inputs, to use as training data;

ThreadVariantModelDiscrepancy, which deals with modelling the relationship between the simulator outputs and the
real-world process being simulated. Recognising this model discrepancy is a crucial step in making useful predictions
from simulators, in calibrating simulation models and handling multiple models.

ThreadGenericMultipleEmulators, which deals with combining two or more emulators to produce emulation of some
combination of the respective simulator outputs;

ThreadGenericEmulateDerivatives, which shows how to use an emulator to predict the values of derivatives of the
simulator output;

ThreadGenericHistoryMatching, which deals with iteratively narrowing down the region of possible input values for
which the simulator would produce outputs acceptably close to observed data.

ThreadGenericCalibration, which addresses how to learn in a fully Bayesian way from observations of the real-world
process.

ThreadTopicSensitivityAnalysis, which is a topic thread providing more detailed background on the topic of
sensitivity analysis, and linking together the various procedures for such techniques in the other toolkit threads.
ThreadTopicScreening, which provides a broad view of the idea of screening the simulator inputs to reduce their
dimensionality.

ThreadTopicExperimentalDesign, which gives a detailed overview of the methods of experimental design that are
relevant to MUCM, particularly those relating to the design of a training sample.

* Another important feature of the toolkit is the MUCM Case Studies. The Case Studies are demonstrations of the MUCM
methodology applied to address substantive challenges faced by users of real simulation models. The techniques that they
use are all described in the toolkit and there are appropriate links from each Case Study to the relevant pages in the
toolkit. The Case Studies generally are accessed from the page MetaCaseStudies, and from the menu bar.

Later releases of the toolkit will add more threads and other material, including more extensive examples to guide the toolkit
user and further Case Studies. In each release we also add more detail to some of the existing threads. For instance, in this
release we have a substantial reworking of the variant thread on model discrepancy, a new thread on calibration and two new
Case Studies.

Last modified: 12 January 2011 18:55:29.
© 2010 Terms of use | Contact us.

attps )t Smacmasionac.uk toalkit) adex.pka/page « MetaHomeFage.html Page i of 3




Toolkit Structure

Built around a number of ‘threads’
Two core threads (GP and BL)

5 variant threads

4 generic threads

3 topic threads

Over 300 pages in all




GP and Bayes Linear

Two fundamental approaches to building emulators

GP - Gaussian process. Assumes a Gaussian distribution.

Requires distributional

oriors but these can be improper

BL — Bayes Linear. No ¢

istributional assumptions. Only

first and second moments. Priors only in terms of

moments. Fast.




The Core Problem

This includes only one simulator
The simulator has only one output
The output is deterministic

We do not have observations of the real world process against
which to compare the simulator

We do not wish to make statements about the real world process

We cannot directly observe simulator derivatives




Steps in building an emulator

Specify the Gaussian process (or BL)model

Select the prior distributions for the GP
hyperparameters

Choose a design for training and validation
Fit the emulator to the simulator runs

Validate and re-fit if needed
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Toolkit Structure
Threads

Case Studies
Page List
Notation

Comments

Overview

The principal user entry points to the MUCM toolkit are the various threads, as explained in the Toolkit Structure. The main threads give detailed instructions
for building and using emulators in various contexts.

This thread takes the user through the analysis of the most basic kind of problem, using the fully Bayesian approach based on a Gaussian process (GP)
emulator. We characterise a2 core problem or model as follows:

® We are only concerned with one simulator.

® The simulator only produces one output, or (more realistically) we are only interested in one output.
® The output is deterministic,

® We do not have observations of the real world process against which to compare the simulator.

® We do not wish to make statements about the real world process.

® We cannot directly observe derivatives of the simulator.

Each of these aspects of the core problem is discussed further in page DiscCore.
The fully Bayesian approach has a further restriction:
® We are prepared to represent the simulator as a Gaussian process.
See also the discussion page on the Gaussian assumption (DiscGaussianAssumption).

This thread comprises 2 number of key stages in developing and using the emulator.

Active inputs

Before beginning to develop the emulator, it is necessary to decide what inputs to the simulator will be varied. Complex simulators often have many inputs
and many outputs. In the core problem, only one output is of interest and we assume that this has already been identified. It may also be necessary to
restrict the number of inputs that will be represented in the emulator. The distinction between active inputs and inactive inputs is considered in the
discussion page DiscActivelnputs.

Once the active inputs have been determined, we will refer to these simply as the inputs, and we denote the number of (active) inputs by J.

The GP model

The first stage in building the emulator is to mode! the mean and covariance structures of the Gaussian process that is to represent the simulator. As




Simple Example:
Energy Balance Model

| Outgoing Long Wave

A

—»- - .

l Fixed locatio «—— |—= Variabie iocation

Upwelling;
(S.Ocean) Deep Ocean

South North

Inputs: |8 initial surface temperatures +8 others
Outputs: |8 final temperatures + 4 others
We use the mean surface temperature as our output

Vary solar constant




Specifying the GP model

The first step in building an emulator is the specification of the
Gaussian process model

This consists of specifying the mean

Elf(z)] = hp(z)

... alternatives for the mean function are given in page
AltMeanFunction

and the specification of the correlation function

Cov[f(z), f(a)] = o”cs(z, 2)

... alternatives for the correlation function are given in page
AltCorrelationFunction
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in Complex Models
Toolkit Home
Tutorial Alternatives: Emulator prior mean function
Toolkit Structure .
Overview
Threads
Case Studies The process of building an emulator of 2 simulator involves first specifying prior beliefs about the simulator and then updating this using a training sample of
simulator runs. Prior specification may be either using the fully Bayesian approach in the form of a Gaussian process or using the Bayes linear approach in
Page List the form of first and second order moments. The basics of building an emulator using these two approaches are set out in the two core threads: the thread

for the analysis of core model using Gaussian process methods (ThreadCoreGP) and the thread for the Bayes linear emulation for the core model
Notation (ThreadCoreBL).

Comments In either approach it is necessary to specify a mean function and covariance function. We consider here the various 2iternative forms of mean function that
are dealt with in the MUCM toolkit. An extension to the case of a vector mean function as required by the thread for the analysis of a simulator with multiple
outputs using Gaussian methods (ThreadVariantMultipleOutputs) can be found in a companion page to this one, dealing with alternatives for multi-output

mean functions (AltMeanFunctionMultivariate).

Choosing the Alternatives

The mean function gives the prior expectation for the simulator output at any given set of input values. We assume here that only one output is of interest,
as in the core problem.

In general, the mean function will be specified in a form that depends on @ number of hyperparameters. Thus, if the vector of hyperparameters for the mean
function is 3 then we denote the mean function by m(-), so that m(x) is the prior expectation of the simulator output for vector . of input values.

In principle, this should entail the analyst thinking about what simulator output would be expected for every separate possible input vector . In practice, of
course, this is not possible. Instead, m(-) represents the general shape of how the analyst expects the simulator output to respond to changes in the inputs.
The use of the unknown hyperparameters allows the emulator to learn their values from the training sample data. So the key task in specifying the mean
function is to think generally about how the output will respond to the inputs.

Having specified m(-), the subsequent steps involved in building and using the emulator are described in ThreadCoreGP / ThreadCoreBL.

The Nature of the Alternatives

The linear form

It is usual, and convenient in terms of subsequent building and use of the emulator, to specify 2 mean function of the form
m(z) = 8T h(x)
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Toolkit Structure X
Overview
Threads
Case Studies The process of building an emulator of 2 simulator involves first specifying prior beliefs about the simulator and then updating this using a training sample of
simulator runs. Prior specification may be either using the fully Bayesian approach in the form of a Gaussian process (GP) or using the Bayes linear approach
Page List in the form of first and second order moments. The basics of building an emulator using these two approaches are set out in the two core threads: the
thread for the analysis of the core model using Gaussian process methods (ThreadCoreGP) and the thread for the Bayes linear emulation for the core model
Notation (ThreadCoreBL).
Comments

In either approach it is necessary to specify a covariance function. The formulation of a covariance function is considered in the discussion page on the GP
covariance function (DiscCovarianceFunction). Within the MUCM toolkit, the covariance function is generally assumed to have the form of a variance (or
covariance matrix) multiplied by a correlation function. We present here some alternative forms for the correlation function ¢(-, -), dependent on
hyperparameters j.

Choosing the Alternatives

The correlation function c(, ') expresses the correlation between the simulator outputs at input configurations » and 5/, and represents the extent to which
we believe the outputs at those two points should be similar. In practice, it is formulated to express the idea that we believe the simulator output to be a
relatively smooth and continuous function of its inputs. Formally, this means the correlation will be high between points that are close together in the input
space, but low between points that are far apart. The various correlation functions that we will consider in this discussion of alternatives all have this

property.
The Nature of the Alternatives

The Gaussian form
It is common, and convenient in terms of subsequent building and use of the emulator, to specify a covariance function of the form
o(z,7) = exp{—(z - #)TC(z - 2')}, (1)

where ( is a diagonal matrix whose diagonal elements are the inverse squares of the elements of the § vector. Hence, if there are P inputs and the i-th
elements of the input vectors , and ,/ and the correlation length vector § are respectively r;, z; and §,, we can write

e(z,7) = exp [~ T, {(@i — 2)/8)?] = [Ty exp [~ {(z — ) /5] . (@)

This formula shows the role of the correlation length hyperparameter §,. The smaller its value, the closer together x; and .-r: must be in order for the outputs
at .~ and ' to be hiahlv correlated. Larage/small values of A. therefore mean that the output values are correlated over a wide/narrow ranae of the |-th inout




Example: The GP model

* Mean function
E[f(z)] = h(z)8 = [1,z|

e Correlation function

Cov[f(z)] = o?c(z, )

a2
c(x,x'):exp{ Z 5;' }




Priors

The GP model depends on a humber of hyperparameters,
which typically are:

f :mean function hyperparameters
0 : GP variance
0 :Correlation lengths

A fully Bayesian approach requires the specification of
prior distributions for each of these hyperparameters (BL
only needs moments)




Design

We need to design a set of simulator runs to span input
space

Common designs are optimised Latin Hypercubes and
quasi-Monte Carlo sequences (AltCoreDesign or
ThreadTopicExperimentalDesign)

For our example these reduce to equally spaced points
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Toolkit Structure

Threads

Case Studies The preparation for building a Gaussian process (GP) emulator for the core problem involves defining the prior mean and covariance functions, identifying
prior distributions for hyperparameters, creating a design for the training sample, then running the simulator at the input configurations specified in the
Page List design. All of this is described in the thread for the analysis of the core model using Gaussian process methods (ThreadCoreGP). The procedure here is for
Notation taking those various ingredients and creating the GP emulator.

Comments Inputs

Description and Background

® GP prior mean function m(-) depending on hyperparameters 3

® GP prior correlation function ¢(-, -) depending on hyperparameters §

® Prior distribution (-, -, -) for 3.0° and §, where o? Is the process variance hyperparameter

® Design D comprising points {ry,x2,..., Ty, } in the input space

® Output vector f(D) = (f(x,), f(x2) f(zn))7, where f(z;) is the simulator output from input point

Outputs

A GP-based emulator in one of the forms presented in the discussion page on GP emulator forms (DiscGPBasedEmulator).

In the case of general prior mean and correlation functions and general prior distribution:

® A GP posterior conditional distribution with mean function /n*(-) and covariance function v* (-, -) conditional on ¢ = {3, 02,4}
® A posterior representation for 4

In the case of linear mean function, general correlation function, weak prior information on 3, o2 and general prior distribution for §:

® At process posterior conditional distribution with mean function m*(-), covariance function v*(-. -) and degrees of freedom j* conditional on §
® A posterior representation for §

As explained in DiscGPBasedEmulator, the "posterior representation” for the hyperparameters is formally the posterior distribution for those
hyperparameters, but for computational purposes this distribution is represented by 2 sample of hyperparameter values. In either case, the outputs define
the emulator and allow all necessary computations for tasks such as prediction of the simulator output, uncertainty analysis or sensitivity analysis.

Procedure




Mean Surface Temperature
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Validation

Produce new set of simulator runs
Compare true values with the emulator

Generalisation of regression diagnostics (Bastos and
O’Hagan, 2009)

Over confident and under confident emulators
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Toolkit Structure

Threads

Case Studies Once an emulator has been built, under the fully Bayesian Gaussian process approach, using the procedure in page ProcBuildCoreGP, it is important to
validate it. Validation involves checking whether the predictions that the emulator makes about the simulator output accord with actual observation of runs
Page List of the simulator. Since the emulator has been built using a training sample of runs, it will inevitably predict those correctly. Hence validation uses an
additional set of runs, the validation sample.

Description and Background

Notation

Co e We describe here the process of setting up a validation sample, using the validation data to test the emulator and interpreting the results of the tests.

We consider here an emulator for the core problem, and in particular we are only concerned with one simulator output.

Inputs

® Emulator, as derived in page ProcBuildCoreGP.
® The input configurations D = {xy, z2,....2,} at which the simulator was run to produce the training data from which the emulator was built.

Outputs

® A conclusion, either that the emulator is valid or that it is not valid.
® If the emulator is deemed not valid, then indications for how to improve it.

Procedure

The validation sample

The validation sample must be distinct from the training sample that was used to build the emulator. One approach is to reserve part of the training data for
validation, and to build the emulator only using the rest of the training data. However, the usual approach to designing 2 training sample (typically to use
points that are well spread out, through some kind of space-filling design, see the alternatives page on training sample design (AltCoreDesign)) does not
generally provide subsets that are good for validation. It is preferable to develop a validation sample design after building the emulator, taking into account
the training sample design J) and the estimated values of the correlation function hyperparameters §.

Validation sample design is discussed in page DiscCoreValidationDesign. We denote the validation design by D’ = {z},z/,....,x,}, with ,/ points. The
simulator Is run at each of the validation points to produce the output vector f(DY) = (f(z}), f(a%),... f(2/.)T) where f(x)) is the simulator output from
the run with input vector z/.
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Not Just Toy Models
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Procedure: Uncertainty Analysis using a GP emulator

Description and Background

One of the simpler tasks that is required by users of simulators is uncertainty analysis (UA), which studies the uncertainty in model outputs that is induced by uncertainty in
the inputs. Although relatively simple in concept, UA is both important and demanding. It is important because it is the primary way to quantify the uncertainty in predictions
made by simulators. It is demanding because in principle it requires us to evaulate the output at all possible values of the uncertain inputs. The MUCM approach of first building
an emulator is a powerful way of making UA feasible for complex and computer-intensive simulators.

This procedure describes how to compute some of the UA measures discussed in the definition page of Uncertainty Analysis (DefUncertaintyAnalysis). In particular, we consider
the uncertainty mean and variance:

E[f(X)] = [y f(z)w(z)dz

Var[f(X)] = [(f(z) - E[f(2)))w(z)dz

Notice that it is necessary to specify the uncertainty about the inputs through a full probability distribution for the inputs. This clearly demands a good understanding of
probability and its use to express personal degrees of belief. However, this specification of uncertainty often also requires interaction with relevant experts whose knowledge is
being used to specify values for individual inputs. There is a considerable literature on the elicitation of expert knowledge and uncertainty in probabilistic form, and some
references are given at the end of this page.

In practice, we cannot evaluate either E[f(X)] or Var[f(X)] directly from the simulator because the integrals require us to know f(z) at every z. Even evaluating numerically
by a Monte Carlo integration approach would require a very large number of runs of the simulator, so this is one task for which emulation is very powerful. We build an
emulator from a limited training sample of simulator runs and then use the emulator to evaluate these quantities. We still cannot evaluate them exactly because of
uncertainty in the emulator. We therefore present procedures here for calculating the emulator (i.e. posterior) mean of each quantity as an estimate; while the emulator
variance provides a measure of accuracy of that estimate. We use E* and Var® to denote emulator mean and variance.

We assume here that a Gaussian process (GP) emulator has been built in the form described in the procedure page for building a GP emulator (ProcBuildCoreGP), and that we
are only emulating a single output. Note that ProcBulldCoreGP gives procedures for deriving emulators in a number of different forms, and we consider here only the "linear
mean and weak prior" case where the GP has a linear mean function, weak prior information is specified on the hyperparameters § and ¢° and the emulator is derived with a
single point estimate for the hyperparameters 4.

Inputs

e An emulator as defined in ProcBulldCoreGP
e A distribution w(.) for the uncertain inputs

Outputs

e The expected value E*[E[f(X)]] and variance Var*[E[f(X)]] of the uncertainty distribution mean
e The expected value E*[Var|f(X)]] of the uncertainty distribution variance

- A — — .



Beyond the Core

* The core problem is the simplest method.

* More complex methods are built on this.
ThreadVariantMultipleOutputs
ThreadVariantDynamic
ThreadVariantTwolevelEmulation
ThreadVariantWithDerivatives

ThreadVariantModelDiscrepancy

ThreadGenericMultipleEmulators
ThreadGenericEmulateDerivatives

ThreadGenericHistoryMatching




Multiple Outputs
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Thread: Analysis of a simulator with multiple outputs using Gaussian Process
methods

The multivariate emulator

The principal user entry points to the MUCM toolkit are the various threads, as explained in the Toolkit structure page (MetaToolkitStructure). The main threads give detailed
instructions for building and using emulators in various contexts.

This thread takes the user through the analysis of a variant of the most basic kind of problem, using the fully Bayesian approach based on a Gaussian process (GP) emulator.
We characterise the basic multi-output model as follows:

We are only concerned with one simulator,

The output is deterministic.

We do not have observations of the real world process against which to compare the simulator.
We do not wish to make statements about the real world process.

We cannot directly cbserve derivatives of the simulator,

Each of these requirements is also a part of the core problem, and is discussed further in DiscCore. However, the core problem further assumes that the simulator only
produces one output, or that we are only interested in one output. We relax that assumption here. The core thread ThreadCoreGP deals with the analysis of the core problem
using a GP emulator. This variant thread extends the core analysis to the case of a simulator with more than one output.

The fully Bayesian approach has a further restriction:

e We are prepared to represent the simulator as a Gaussian process.
There is discussion of this requirement in DiscGaussianAssumption.
Alternative approaches to emulation

There are various approaches to tackling the problems raised by having multiple outputs, which are discussed in the alternatives page on emulating multiple outputs
(AltMultpleOutputsApproach ). Some approaches reduce or transform the multi-output model so that it can be analysed by the methods in ThreadCoreGP. However, others
employ a multivariate GP emulator that is described in detail in the remainder of this thread.

The GP model

The first stage in building the emulator is to model the mean and covariance structures of the Gaussian process that is to represent the simulator. As explained in the
definition of a multivariate Gaussian process, a GP is characterised by a mean function and a covariance function. We model these functions to represent prior beliefs that we
have about the simulator, i.e. beliefs about the simulator prior to incorporating information from the training sample.

Alternative choices of the emulator prior mean function are considered in AltMeanFunction, with spedfic discussion on the multivariate case in AltMeanFunctionMultivariate. In
general, the choice will lead to the mean function depending on a set of hyperparameters that we will denote by 5. We will generally write the mean function as m(-) where
the dependence on @ is implicit. Note that if we have r outputs, then m(-) is a vector of 1 x r elements comprising the mean functions of the various outputs.
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observations of the real system
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Calibration and History Matching

Simulator users often want to tune the simulator using
observations of the real system

Calibration finds estimates and uncertainties for the ‘best’
Inputs

History Matching finds regions of ‘'not implausible inputs’
Two very important points

|. Calibration will reduce uncertainty about x but will not
eliminate it

2. It is necessary to understand how the simulator relates to
reality

Model discrepancy
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value 7

* Even with best/correct inputs x
Model discrepancy is the difference z — f(x)
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Model discrepancy is due to
*  Wrong or incomplete science
*  Programming errors, rounding errors

* Inaccuracy in numerically solving systems of equations




Model discrepancy

Simulator output y = f(x) will not equal the real system
value 7

* Even with best/correct inputs x

Model discrepancy is the difference z — f(x)

Can be expressed a mean (z — f{x)) or a variance (z — f(x))?
Model discrepancy is due to

*  Wrong or incomplete science

*  Programming errors, rounding errors

* Inaccuracy in numerically solving systems of equations

lgnoring model discrepancy leads to poor calibration
*  Overfitting of parameter estimates

QOver-confidence in the fitted values




History Matching




Implausibility

* Define a measure of implausibility (7,,))

2
12 o (:Cobs — xc'm,ul)
2 2

mp

2
o + T obs T Udi.sc:’f’éi’P

emul

If the implausibility is greater then 3 those values of the
inputs are deemed implausible

Because this is a function of the emulator not the original
simulator runs we calculate it everywhere in input space




Waves of Implausibility

* Wave |I: Apply the implausibility measure. Mark part of
input space as implausible

* Wave 2: Add extra points in the not implausible region
and rebuild the emulator. Repeat the implausibility measure

* Wave 3+: Repeat until the implausible region ceases to
grow




A |-d example

Emulator of Model Output f(x)

Madel Output f(x)

Input Parameter x

Thanks to lan Vernon U. Durham
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Madel Output f(x)

Implausibility = I(x)
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Emulator of Model Output f(x)
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Madel Output f(x)

Implausibility = I(x)

Emulator of Model Output f(x)
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Madel Output f(x)

Implausibility = I(x)

Emulator of Model Output f(x)
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Emulator of Model Output f(x)
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Example - Galform

¢ Galform is a simulator of Galaxy formation
e [t has |7 inputs

® The amount of not implausible space in each wave is

Wave 1 14.9%
Wave 2 5.9%
Wave 3 1.6%
Wave 4 0.26%

Wave 5 0.036%
® None of the original 1000 member LHC was an acceptable fit to the

data
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Toolkit
Structure

Threads The principal user entry points to the MUCM toolkit are the various threads, as
explained in MetaToolkitStructure., This thread takes the user through a

technique known as history matching, which is used to learn about the inputs =

Overview

Case Studies

Page List to a model f(z) using observations of the real system z. As the history

. matching process typically involves the use of expectations and variances of
Notation emulators, we assume that the user has successfully emulated the model using
Comments the Bayes Linear strategy as cetailed in ThreadCoreBL. An associated

technigue corresponding to a fully probabilistic emulator, as described in
ThreadCoreGP, will be discussed in a future release. Here we use the term

model synonymously with the term simulator.

The description of the link between the model and the real system is vital in
the history matching process, therefore several of the concepts discussed in
ThreadVariantModelDiscrepancy will be used here.
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We can also calibrate the simulator(possibly after history
matching)

Include a model discrepancy term

Reality = simulator + discrepancy
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We can also calibrate the simulator(possibly after history
matching)

Include a model discrepancy term

Reality = simulator + discrepancy

y(xcon) — f(xcona xcal) + d(xcon)




Calibration

We can also calibrate the simulator(possibly after history

matching)

Include a model discre

bancy term

Reality = simulator + ¢

Iscrepancy

y(mcon) — f(xcona xcal) + d(fvcon)

Split the inputs in control inputs (x..:) and calibration

inputs (Xcai)

Simultaneously fit a GP to both the simulator output and
the discrepancy

Obtain posteriors for

the the best inputs, the

observational error, the emulator and the discrepancy

function




Calibration

Thread: Calibration

Overview

Calibration is the process of learning from observations of a real process about how to use a simulator of that process to best approximate and predict reality.
Calibration brings together a number of different elements that are dealt with individually elsewhere in the Toolkit.

The simulator itself, which we will usually need to approximate using an emulator

The best input values of the calibration parameters needed to tune the simulator to reality

A representation of the relationship between the simulator (using best inputs) and reality through a model discrepancy function
A formulation of how the observations of the real process relate to the variables represented by simulator outputs.

In principle, the observations of reality enable us to learn about all four of these elements, because in general there is uncertainty regarding all four.

We will learn about the best input values of calibration parameters, favouring values which bring the simulator outputs close to the observations.

We will learn about model discrepancy through the fact that even with best input values the simulator will not predict the observations perfectly.

We will learn about the observation process, for instance the variance of observation error, through the residual noise after accounting for (smooth) model
discrepancy.

We will learn about the simulator, favouring values within the range of uncertainty of the emulator that allow the simulator to be tuned well without using
a priori implausible values for the calibration parameters.

All of this learning will be heavily interlinked, and since the number of observations is often very limited the learning about any one element may be minimal. In
this thread, in addition to the full calibration which puts all of the uncertain elements into the analysis, we consider methods which compromise by making
simplifying assumptions and so bring out some learning more strongly.

This thread adopts the Bayesian perspective (as opposed to the Bayes linear one; see AltGPorBLEmulator).
Notation and terminology

In accordance with toolkit notation, in this page we use the following symbols:

z - inputs to the simulator

f(z) - output(s) of the simulator
y - actual system value(s)

z - observations of reality y

d - model discrepancy

Using the additional notation introduced in the model discrepancy thread page ThreadVariantModelDiscrepancy, model discrepancy links the simulator to reality via
the model discrepancy equation, which is usually written

Y(@eon) = f(@cony o) + A(@con)

where y, f and d are all vectors of » elements corresponding to the r simulator outputs and we have divided the inputs & into control inputs &,n and calibratior@
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Stochastic Simulators

Some simulators are not deterministic

Current work looks at emulating means and variances in
a linked way

Design
Extremes

Not in the toolkit - yet




Conclusions

* Emulators can be used to quantify uncertainty in
complex systems

e The MUCM toolkit is a useful resource
Updated every 3 months
*  Comments/feedback needed
*  Next update imminent!

* Still work to do - we are not finished yet




